This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently. We show that, under this distribution, the probability of drawing a path connecting two nodes can easily be computed in closed form by simple matrix inversion. This probability captures a notion of relatedness between nodes of the graph: two nodes are considered as highly related when they are connected by many, preferably low-cost, paths. As an application, two families of distances between nodes are derived from the BoP probabilities. Interestingly, the second distance family interpolates between the shortest path distance and the resistance distance. In addition, it extends the Bellman-Ford formula for computing the shortest path distance in order to integrate sub-optimal paths by simply replacing the minimum operator by the soft minimum operator. Experimental results on semi-supervised classification show that both of the new distance families are competitive with other state-ofthe-art approaches. In addition to the distance measures studied in this paper, the bag-of-paths framework enables straightforward computation of many other relevant network measures.
This work introduces a link-based covariance measure between the nodes of a weighted directed graph, where a cost is associated with each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (high-cost) paths occur with a low probability while short (low-cost) paths occur with a high probability. The sum-over-paths (SoP) covariance measure between nodes is then defined according to this probability distribution: two nodes are considered as highly correlated if they often co-occur together on the same--preferably short--paths. The resulting covariance matrix between nodes (say n nodes in total) is a Gram matrix and therefore defines a valid kernel on the graph. It is obtained by inverting an n\times n matrix depending on the costs assigned to the arcs. In the same spirit, a betweenness score is also defined, measuring the expected number of times a node occurs on a path. The proposed measures could be used for various graph mining tasks such as computing betweenness centrality, semi-supervised classification of nodes, visualization, etc., as shown in Section 7.
This paper describes a novel technique, called D-walks, to tackle semi-supervised classification problems in large graphs. We introduce here a betweenness measure based on passage times during random walks of bounded lengths. Such walks are further constrained to start and end in nodes within the same class, defining a distinct betweenness for each class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.