We demonstrate the advantages of a ferroelectric liquid crystal spatial light modulator for optical tweezer array applications. The fast switching speeds of the ferroelectric device (compared to conventional nematic systems) is shown to enable very rapid reconfiguration of trap geometries, controlled, high speed particle movement, and tweezer array multiplexing.
Two-photon polymerization (TPP) is capable of fabricating 3D structures with dimensions from sub-µm to a few hundred µm. As a direct laser writing (DLW) process, fabrication time of 3D TPP structures scale with the third order, limiting its use in large volume fabrication. Here, we report on a scalable fabrication method that cuts fabrication time to a fraction. A parallelized 9 multi-beamlets DLW process, created by a fixed diffraction optical element (DOE) and subsequent stitching are used to fabricate large periodic high aspect ratio 3D microstructured arrays with sub-micron features spanning several hundred of µm 2. The wall structure in the array is designed with a minimum of traced lines and is created by a low numerical aperture (NA) microscope objective, leading to self-supporting lines omitting the need for line-hatching. The fabricated periodic arrays are applied in a cell-3D microstructure interaction study using living HeLa cells. First indications of increased cell proliferation in the presence of 3D microstructures compared to planar surfaces are obtained. Furthermore, the cells adopt an elongated morphology when attached to the 3D microstructured surfaces. Both results constitute promising findings rendering the 3D microstructures a suited tool for cell interaction experiments, e.g. for cell migration, separation or even tissue engineering studies. 3D fabrication approaches including electro-spinning, nano-imprinting, additive 3D printing of ceramics, metals and plastics together with other forms of bottom-up techniques, have revolutionized tissue and organ engineering, cell migration research and other applications in biomedical research 1-6. Additionally, advanced light-induced material processing techniques have been developed including mask-less and rapid micro-fabrication and-machining, e.g. for surface structuring, ablation and modifications 7-10. Belonging to this class of methods is direct laser writing (DLW) based micro-fabrication, where single-photon DLW can fabricate 2D and 2.5D type structures, while the inherent sectioning capability of multi-photon based DLW allows the fabrication of 3D microstructures 11-14. DLW has shown versatility in the fabrication of high-quality micro-optical elements 12 , waveguides 15 , and micro-machines 16. Laser-based manufacturing is capable of processing bio-compatible materials 17-19. As an optical technique DLW is limited by optical diffraction. Therefore, achievable feature sizes relate to the wavelength of the light source used. The microfabrication resolution furthermore is governed by the material properties, including the polymerization or ablation thresholds. The combination of these two aspects ultimately may allow for fabricating feature sizes well below the optical diffraction limit 20-22. The DLW-based polymerization fabrication process is based on tracing the contours of the structure design in a photosensitive material, followed by a development step to remove the developed/undeveloped polymer to obtain the final microfabricated structure....
A particular class of Montgomery's self-imaging objects that we call continuously self-imaging gratings (CSIG's) is introduced. When they are illuminated by a plane wave, these objects produce a field whose intensity profile is a propagation- and wavelength-invariant biperiodic array of bright spots. The mathematical construction of these objects and their intrinsic properties are described. On a practical level, CSIG's are compact and achromatic nondiffracting array generators. We show that a good CSIG approximation can be realized by a two-level phase grating that is experimentally tested.
We present a scalar model to overcome the computation time and sampling interval limitations of the traditional Rayleigh-Sommerfeld (RS) formula and angular spectrum method in computing wide-angle diffraction in the far-field. Numerical and experimental results show that our proposed method based on an accurate nonparaxial diffraction step onto a hemisphere and a projection onto a plane accurately predicts the observed nonparaxial far-field diffraction pattern, while its calculation time is much lower than the more rigorous RS integral. The results enable a fast and efficient way to compute far-field nonparaxial diffraction when the conventional Fraunhofer pattern fails to predict correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.