Abstract. The subfamily Ambleminae is the most diverse subfamily of fresh-water mussels (order Unionoida), a globally diverse and ecologically prominent group of bivalves. About 250 amblemine species occur in North America; however, this diversity is highly imperiled, with the majority of species at risk. Assessing and protecting this diversity has been hampered by the uncertain systematics of this group. This study sought to provide an improved phylogenetic framework for the Ambleminae. Currently, 37 North American genera are recognized in Ambleminae. Previous phylogenetic studies of amblemines highlighted the need for more extensive sampling due to the uncertainties arising from polyphyly of many currently recognized taxa. The present study incorporated all amblemine genera occurring in North America north of the Rio Grande, with multiple species of most genera, including the type species for all but seven genera. A total of 192 new DNA sequences were obtained for three mitochondrial gene regions: COI, 16S, and ND1. In combination with published data, this produced a data matrix incorporating 357 gene sequences for 143 operational taxonomic units, representing 107 currently recognized species. Inclusion of published data provides additional taxa and a summary of present molecular evidence on amblemine phylogeny, if at the cost of increasing the amount of missing data. Parsimony and Bayesian analyses suggest that most amblemine genera, as currently defined, are polyphyletic. At higher taxonomic levels, the tribes Quadrulini, Lampsilini, and Pleurobemini were supported; the extent of Amblemini and the relationships of some genera previously assigned to that tribe remain unclear. The eastern North American amblemines appear monophyletic. Gonidea and some Eurasian taxa place as probable sister taxa for the eastern North American Ambleminae. The results also highlight problematic taxa of particular interest for further work.
Freshwater bivalves of the order Unioniformes represent the largest bivalve radiation in freshwater. The unioniform radiation is unique in the class Bivalvia because it has an obligate parasitic larval stage on the gills or fins of fish; it is divided into 6 families, 181 genera, and ∼800 species. These families are distributed across 6 of the 7 continents and represent the most endangered group of freshwater animals alive today. North American unioniform bivalves have been the subject of study and illustration since Martin Lister, 1686, and over the past 320 y, significant gains have been made in our understanding of the evolutionary history and systematics of these animals. Here, the current state of unioniform systematics and evolution is summarized, and suggestions for future research themes are proposed. Advancement in the areas of systematics and evolutionary relationships within the Unioniformes will require a resurgence of survey work and reevaluation of all taxa, especially outside of North America and Western Europe. This work will require collection of animals for shell morphology, comparative anatomy, and molecular analyses. Along with reexamination of described taxa, a renewed emphasis on the natural history, host-fish relationships, ecology, and physiology of these animals is needed. Traditional conchological and anatomical characters should be reevaluated, new character suites should be added, and new morphometric methods should be applied. The fossil record of freshwater bivalves should be carefully reviewed, and phylogenetic hypotheses including fossil taxa must be developed. We will have to expand our set of molecular tools to include or develop additional markers, such as single-copy nuclear genes and microsatellites. Examination of double uniparental inheritance of mitochondrial deoxyribonucleic acid (DNA) is providing new insights into the evolution of this order. Mitochondrial gene order differs among genera but is still to be explored. Expansion of our understanding of the evolutionary relationships and history of unioniform bivalves will provide a solid foundation to study the zoogeography of these rather sessile, obligate freshwater organisms. The unique natural history of unioniform bivalves provides a fertile area for testing and developing evolutionary theories, and, as our understanding of the systematics of these animals improves, a better understanding of the evolution of this expansive radiation in freshwater will develop. Keywords Unioniformes, mussels, bivalves, macroinvertebrates, benthic, clams Abstract. Freshwater bivalves of the order Unioniformes represent the largest bivalve radiation in freshwater. The unioniform radiation is unique in the class Bivalvia because it has an obligate parasitic larval stage on the gills or fins of fish; it is divided into 6 families, 181 genera, and ;800 species. These families are distributed across 6 of the 7 continents and represent the most endangered group of freshwater animals alive today. North American unioniform bivalves hav...
Student evaluations of teaching are widely believed to contain gender bias. In this study, we conduct a randomized experiment with the student evaluations of teaching in four classes with large enrollments, two taught by male instructors and two taught by female instructors. In each of the courses, students were randomly assigned to either receive the standard evaluation instrument or the same instrument with language intended to reduce gender bias. Students in the anti-bias language condition had significantly higher rankings of female instructors than students in the standard treatment. There were no differences between treatment groups for male instructors. These results indicate that a relatively simple intervention in language can potentially mitigate gender bias in student evaluation of teaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.