There is currently a substantial volume of research underway to develop more effective approaches for the regeneration of functional muscle tissue as treatment for volumetric muscle loss (VML) injury, but few studies have evaluated the relationship between injury and the biomechanics required for normal function. To address this knowledge gap, the goal of this study was to develop a novel method to quantify the changes in gait of rats with tibialis anterior (TA) VML injuries. This method should be sensitive enough to identify biomechanical and kinematic changes in response to injury as well as during recovery. Control rats and rats with surgically-created VML injuries were affixed with motion capture markers on the bony landmarks of the back and hindlimb and were recorded walking on a treadmill both prior to and post-surgery. Data collected from the motion capture system was exported for
post-hoc
analysis in OpenSim and Matlab.
In vivo
force testing indicated that the VML injury was associated with a significant deficit in force generation ability. Analysis of joint kinematics showed significant differences at all three post-surgical timepoints and gait cycle phase shifting, indicating augmented gait biomechanics in response to VML injury. In conclusion, this method identifies and quantifies key differences in the gait biomechanics and joint kinematics of rats with VML injuries and allows for analysis of the response to injury and recovery. The comprehensive nature of this method opens the door for future studies into dynamics and musculoskeletal control of injured gait that can inform the development of regenerative technologies focused on the functional metrics that are most relevant to recovery from VML injury.
Mosquitoes carry a number of deadly pathogens that are transmitted while feeding on blood through the skin, and studying mosquito feeding behavior could elucidate countermeasures to mitigate biting. Although this type of research has existed for decades, there has yet to be a compelling example of a controlled environment to test the impact of multiple variables on mosquito feeding behavior. In this study, we leveraged uniformly bioprinted vascularized skin mimics to create a mosquito feeding platform with independently tunable feeding sites. Our platform allows us to observe mosquito feeding behavior and collect video data for 30–45 min. We maximized throughput by developing a highly accurate computer vision model (mean average precision: 92.5%) that automatically processes videos and increases measurement objectivity. This model enables assessment of critical factors such as feeding and activity around feeding sites, and we used it to evaluate the repellent effect of DEET and oil of lemon eucalyptus-based repellents. We validated that both repellents effectively repel mosquitoes in laboratory settings (0% feeding in experimental groups, 13.8% feeding in control group, p < 0.0001), suggesting our platform’s use as a repellent screening assay in the future. The platform is scalable, compact, and reduces dependence on vertebrate hosts in mosquito research.
Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.