This article studies a composer style classification task based on raw sheet music images. While previous works on composer recognition have relied exclusively on supervised learning, we explore the use of self-supervised pretraining methods that have been recently developed for natural language processing. We first convert sheet music images to sequences of musical words, train a language model on a large set of unlabeled musical “sentences”, initialize a classifier with the pretrained language model weights, and then finetune the classifier on a small set of labeled data. We conduct extensive experiments on International Music Score Library Project (IMSLP) piano data using a range of modern language model architectures. We show that pretraining substantially improves classification performance and that Transformer-based architectures perform best. We also introduce two data augmentation strategies and present evidence that the model learns generalizable and semantically meaningful information.
This paper studies instrument classification of solo sheet music. Whereas previous work has focused on instrument recognition in audio data, we instead approach the instrument classification problem using raw sheet music images. Our approach first converts the sheet music image into a sequence of musical words based on the bootleg score representation, and then treats the problem as a text classification task. We show that it is possible to significantly improve classifier performance by training a language model on unlabeled data, initializing a classifier with the pretrained language model weights, and then finetuning the classifier on labeled data. In this work, we train AWD-LSTM, GPT-2, and RoBERTa models on solo sheet music images from IMSLP for eight different instruments. We find that GPT-2 and RoBERTa slightly outperform AWD-LSTM, and that pretraining increases classification accuracy for RoBERTa from 34.5% to 42.9%. Furthermore, we propose two data augmentation methods that increase classification accuracy for RoBERTa by an additional 15%.
This paper studies the problem of identifying piano music in various modalities using a single, unified approach called marketplace fingerprinting. The key defining characteristic of marketplace fingerprinting is choice: we consider a broad range of fingerprint designs based on a generalization of standard n-grams, and then select the fingerprint designs at runtime that are best for a specific query. We show that the large-scale retrieval problem can be framed as an economics problem in which a consumer and a store interact. In our analogy, the runtime search is like a consumer shopping in the store, the items for sale correspond to fingerprints, and purchasing an item corresponds to doing a fingerprint lookup in the database. Using basic principles of economics, we design an efficient marketplace in which the consumer has many options and adopts a rational buying strategy that explicitly considers the cost and expected utility of each item. We evaluate our marketplace fingerprinting approach on four different sheet music retrieval tasks involving sheet music images, MIDI files, and audio recordings. Using a database containing approximately 375,000 pages of sheet music, our method is able to achieve 0.91 mean reciprocal rank with sub-second average runtime on cell phone image queries. On all four retrieval tasks, the marketplace method substantially outperforms previous methods while simultaneously reducing average runtime. We present comprehensive experimental results, as well as detailed analyses to provide deeper intuition into system behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.