Balloon angioplasty disrupts the protective endothelial lining of the arterial wall, rendering arteries susceptible to thrombosis and intimal thickening. We show here that vascular endothelial growth factor (VEGF), an endothelial cell mitogen, is upregulated in medial smooth muscle cells of the arterial wall in response to balloon injury. Both protein kinase C (PKC) and tyrosine kinase pp60src mediate augmented VEGF expression. In contrast, nitric oxide (NO) donors inhibit PKC-induced VEGF upregulation by interfering with binding of the transcription factor activator protein-1 (AP-1) to the VEGF promoter. Inhibition of VEGF promoter activation suggests that NO secreted by a restored endothelium functions as the negative feedback mechanism that downregulates VEGF expression to basal levels. Administration of a neutralizing VEGF antibody impaired reendothelialization following balloon injury performed in vivo. These findings establish a reciprocal relation between VEGF and NO in the endogenous regulation of endothelial integrity following arterial injury.
As early as 30 minutes after balloon injury, myocytes appear to undergo apoptotic cell death at a high frequency as shown by TUNEL staining, chromatin condensation, and the appearance of morphological features in electron micrographs. The induction of apoptosis coincides with a marked downregulation of bcl-X expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.