Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression. In vitro, these cells differentiated into ECs. In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis. These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis.
We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L -arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L -arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L -arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS Ϫ / Ϫ mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS
Background-Endothelial progenitor cells (EPCs) circulate in adult peripheral blood (PB) and contribute to neovascularization. However, little is known regarding whether EPCs and their putative precursor, CD34-positive mononuclear cells (MNC CD34ϩ ), are mobilized into PB in acute ischemic events in humans. Methods and Results-Flow cytometry revealed that circulating MNC CD34ϩ counts significantly increased in patients with acute myocardial infarction (nϭ16), peaking on day 7 after onset, whereas they were unchanged in control subjects (nϭ8) who had no evidence of cardiac ischemia. During culture, PB-MNCs formed multiple cell clusters, and EPC-like attaching cells with endothelial cell lineage markers (CD31, vascular endothelial cadherin, and kinase insert domain receptor) sprouted from clusters. In patients with acute myocardial infarction, more cell clusters and EPCs developed from cultured PB-MNCs obtained on day 7 than those on day 1. Plasma levels of vascular endothelial growth factor significantly increased, peaking on day 7, and they positively correlated with circulating MNC CD34ϩ counts (rϭ0.35, Pϭ0.01).
Conclusions-This is the first clinical demonstration showing that lineage-committed EPCs and MNCCD34ϩ , their putative precursors, are mobilized during an acute ischemic event in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.