The kidney has been widely exploited as a model system for the study of tissue inductions regulating vertebrate organogenesis. Kidney development is initiated by the ingrowth of the Wolfian duct-derived ureteric bud into the presumptive kidney mesenchyme. In response to a signal from the ureter, mesenchymal cells condense, aggregate into pretubular clusters and undergo an epithelial conversion generating a simple tubule. This then undergoes morphogenesis and is transformed into the excretory system of the kidney, the nephron. We report here that the expression of Wnt-4, which encodes a secreted glycoprotein, correlates with, and is required for, kidney tubulogenesis. Mice lacking Wnt-4 activity fail to form pretubular cell aggregates; however, other aspects of mesenchymal and ureteric development are unaffected. Thus, Wnt-4 appears to act as an autoinducer of the mesenchyme to epithelial transition that underlies nephron development.
Amphibian studies have implicated Wnt signaling in the regulation of mesoderm formation, although direct evidence is lacking. We have characterized the expression of 12 mammalian Wnt-genes, identifying three that are expressed during gastrulation. Only one of these, Wnt-3a, is expressed extensively in cells fated to give rise to embryonic mesoderm, at egg cylinder stages. A likely null allele of Wnt-3a was generated by gene targeting. All Wiit-3fl~/Wnt-3a~ embryos lack caudal somites, have a disrupted notochord, and fail to form a tailbud. Thus, Wnt-Sa may regulate dorsal (somitic) mesoderm fate and is required, by late primitive steak stages, for generation of all new embryonic mesoderm. Wnt-3a is also expressed in the dorsal CNS. Mutant embryos show CNS dysmorphology and ectopic expression of a dorsal CNS marker. We suggest that dysmorphology is secondary to the mesodermal and axial defects and that dorsal patterning of the CNS may be regulated by inductive signals arising from surface ectoderm.
The Notch signaling pathway is essential for embryonic vascular development in vertebrates. Here we show that mouse embryos heterozygous for a targeted mutation in the gene encoding the DLL4 ligand exhibit haploinsufficient lethality because of defects in vascular remodeling. We also describe vascular defects in embryos homozygous for a mutation in the Rbpsuh gene, which encodes the primary transcriptional mediator of Notch signaling. Conditional inactivation of Rpbsuh function demonstrates that Notch activation is essential in the endothelial cell lineage. Notch pathway mutant embryos exhibit defects in arterial specification of nascent blood vessels and develop arteriovenous malformations. These results demonstrate that vascular remodeling in the mouse embryo is sensitive to Dll4 gene dosage and that Notch activation in endothelial cells is essential for embryonic vascular remodeling.Supplemental material is available at http://www.genesdev.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.