An approach to evaluate the microwave-detected photoconductance decay (MWPCD) is developed, which allows to extract the minority carrier lifetime as a function of the excess carrier density from a single MWPCD measurement. The method is shown to be applicable to thin (w≲200 μm) silicon wafers with low minority carrier recombination at the surfaces and bulk lifetimes in the range of about 1–100 μs. Comparison of the MWPCD results with minority carrier lifetime measurements using the quasi-steady-state photoconductance method reveals very good agreement between both types of measurement. Only when the photoconductance exceeds 30% of the dark conductivity, is a deviation observed, because then the MWPCD signal is no longer directly proportional to the excess carrier density. Minority carrier trapping is found to affect the MWPCD signal only in the tail of the measured photoconductance decay. The evaluation method is used to map the interstitial iron content with high spatial resolution, as well as to determine the minority carrier trap density. An excellent agreement between numerical simulation and measured MWPCD signal is found revealing the assumptions made for the evaluation approach to be valid. This evaluation of the MWPCD measurement is well suited to characterize silicon of low purity and low crystalline quality, which is often employed to solar cells with high spatial resolution.
Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiNx:H/SiOx stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by ASi-Sii, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as InSi-Sii in neutral charge state and C2v configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.