The effects of Pt incorporation on the isothermal oxidation and diffusion behavior of low-sulfur aluminide bond coatings were investigated. Aluminide (NiAl) coatings and Pt-modified aluminide (Ni,Pt)Al coatings were synthesized on a low-sulfur, yttrium-free single-crystal Ni-based superalloy by a high-purity, low-activity chemical vapor deposition (CVD) aluminizing procedure. The isothermal oxidation kinetics and scale adhesion behavior of CVD NiAl and (Ni,Pt)Al were compared at 1150 ЊC. Compositional profiles of alloying elements in the NiAl and (Ni,Pt)Al coatings before and after isothermal oxidation were determined by electron microprobe analysis. Platinum did not reduce oxidescale growth kinetics. No significant differences in bulk refractory metal (W, Ta, Re, and Mo) distributions were observed as a result of Pt incorporation. Spallation of the alumina scale and the formation of large voids along the oxide-metal interface were commonly observed over the NiAl coating grain boundaries after 100 hours at 1150 ЊC. In contrast, no spallation of Al 2 O 3 scales occurred on (Ni,Pt)Al coating surfaces or grain boundaries, although the sulfur content in the CVD (Ni,Pt)Al coatings was higher than that of the CVD NiAl coatings. Most significantly, no voids were observed at the oxide-metal interface on (Ni,Pt)Al coating surfaces or cross sections after 200 hours at 1150 ЊC. It was concluded that a major beneficial effect of Pt incorporation on an aluminide coatings oxidation resistance is the elimination of void growth at the oxide-metal interface, likely by mitigation of detrimental sulfur effects.
The influences of sulfur impurities and Pt incorporation on the scale adhesion behavior of aluminide coatings were studied and compared. Low-sulfur NiAl coatings were prepared on a desulfurized, yttrium-free, single-crystal Ni-based superalloy by a modified version of a conventional aluminizing procedure based on chemical vapor deposition. The sulfur level in the resulting NiAl coatings was measured to be less than ϳ0.5 ppmw by glow-discharge mass spectroscopy. Platinum-modified aluminide coatings were synthesized by first electroplating a thin layer of Pt (ϳ7 m) on the superalloy, followed by the same low-sulfur aluminizing procedure. The measured sulfur content in the (Ni, Pt)Al coating was substantially higher than that of the low-sulfur NiAl coating due to contamination during the Pt electroplating process. A very adherent ␣-Al 2 O 3 scale formed on the grain surfaces of the low-sulfur NiAl coating during cyclic oxidation testing at 1150 ЊC, but scale spallation eventually occurred over many of the NiAl grain boundaries. In contrast, despite the higher level of sulfur in the (Ni Pt)Al coating, a very adherent scale was formed over both the coating grain surfaces and grain boundaries during thermal cycling. These results suggest that Pt additions can mitigate the detrimental influence of sulfur on scale adhesion.
Crystalline mullite was deposited by chemical vapor deposition (CVD) onto SiC/SiC composites overlaid with CVD SiC. Specimens were exposed to isothermal oxidation tests in high‐pressure air + H2O at 1200°C. Unprotected CVD SiC formed silica scales with a dense amorphous inner layer and a thick, porous, outer layer of cristobalite. Thin coatings (∼2 μm) of dense CVD mullite effectively suppressed the rapid oxidation of CVD SiC. No microstructural evidence of mullite volatility was observed under these temperature, pressure, and low‐flow‐rate conditions. Results of this preliminary study indicate that dense, crystalline, high‐purity CVD mullite is stable and protective in low‐velocity, high‐pressure, moisture‐containing environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.