We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power-generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC OPF problems with discrete decisions as mixed-integer nonlinear programs (MINLPs). The solution method starts from a known framework that uses piecewise linear relaxations. These relaxations are modeled as mixed-integer linear programs and adaptively refined until some termination criterion is fulfilled. In this work, we extend and complement this approach by problem-specific as well as very general algorithmic enhancements. In particular, these are mixed-integer second order cone programs as well as primal and dual cutting planes. For example, objective and no-good cuts help to compute good feasible solutions in which outer approximation constraints tighten the relaxations. We present extensive numerical results for various AC OPF problems in which discrete decisions play a major role. Even for hard instances with a large proportion of discrete decisions, the method is able to generate high-quality solutions efficiently. Furthermore, we compare our approach with state-of-the-art MINLP solvers. Our method outperforms all other algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research has been funded by the Federal Ministry of Education and Research of Germany [Grant 05M18WEB]. This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. The authors thank the Deutsche Forschungsgemeinschaft for support within projects A05, B06, B07, and B10 of the Sonderforschungsbereich/Transregio 154 “Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks.” This work has been supported by the Federal Ministry for Economic Affairs and Energy, Germany [Grant 03El1036A]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2023.1270 .
We present a robust approximation of joint chance constrained DC optimal power flow in combination with a model-based prediction of uncertain power supply via R-vine copulas. It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in. This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (Eur J Oper Res (2022) https://doi.org/10.1016/j.ejor.2021.10.051). The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets. The resulting robust optimization problem has a known equivalent tractable reformulation. To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes. The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model. Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts. The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas. We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.