Abstract. Let G be the circulant graph C n (S) with S ⊆ {1, 2, . . . , ⌊ n 2 ⌋}, and let I(G) denote its the edge ideal in the ring R = k[x 1 , . . . , x n ]. We consider the problem of determining when G is Cohen-Macaulay, i.e, R/I(G) is a Cohen-Macaulay ring. Because a Cohen-Macaulay graph G must be well-covered, we focus on known families of wellcovered circulant graphs of the form C n (1, 2, . . . , d). We also characterize which cubic circulant graphs are Cohen-Macaulay. We end with the observation that even though the well-covered property is preserved under lexicographical products of graphs, this is not true of the Cohen-Macaulay property.
A sign pattern Z (a matrix whose entries are elements of {+, −, 0}) is spectrally arbitrary if for any selfconjugate spectrum there is a real matrix with sign pattern Z having the given spectrum. Spectrally arbitrary sign patterns were introduced in [5], where it was (incorrectly) stated that if a sign pattern Z is reducible and each of its irreducible components is a spectrally arbitrary sign pattern, then Z is a spectrally arbitrary sign pattern, and it was conjectured that the converse is true as well; we present counterexamples to both of these statements. In [2] it was conjectured that any n × n spectrally arbitrary sign pattern must have at least 2n nonzero entries; we establish that this conjecture is true for 5 × 5 sign patterns. We also establish analogous results for nonzero patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.