This work presents a method with which to automate simple aspects of geologic image analysis during space exploration. Automated image analysis on board the spacecraft can make operations more efficient by generating compressed maps of long traverses for summary downlink. It can also enable immediate automatic responses to science targets of opportunity, improving the quality of targeted measurements collected with each command cycle. In addition, automated analyses on Earth can process large image catalogs, such as the growing database of Mars surface images, permitting more timely and quantitative summaries that inform tactical mission operations. We present TextureCam, a new instrument that incorporates real-time image analysis to produce texture-sensitive classifications of geologic surfaces in mesoscale scenes. A series of tests at the Cima Volcanic Field in the Mojave Desert, California, demonstrated mesoscale surficial mapping at two distinct sites of geologic interest.
[1] Science missions have limited lifetimes, necessitating an efficient investigation of the field site. The efficiency of onboard cameras, critical for planning, is limited by the need to downlink images to Earth for every decision. Recent advances have enabled rovers to take follow-up actions without waiting hours or days for new instructions. We propose using built-in processing by the instrument itself for adaptive data collection, faster reconnaissance, and increased mission science yield. We have developed a machine learning pixel classifier that is sensitive to texture differences in surface materials, enabling more sophisticated onboard classification than was previously possible. This classifier can be implemented in a Field Programmable Gate Array (FPGA) for maximal efficiency and minimal impact on the rest of the system's functions. In this paper, we report on initial results from applying the texturesensitive classifier to three example analysis tasks using data from the Mars Exploration Rovers. Lett., 40,[4188][4189][4190][4191][4192][4193]
Nowadays, fingerprint is the most used biometric trait for in dividuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accu racy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algo rithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improve ment up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowl edge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.