Agriculture has always been an important economic and social sector for humans. Fruit production is especially essential, with a great demand from all households. Therefore, the use of innovative technologies is of vital importance for the agri-food sector. Currently artificial intelligence is one very important technological tool widely used in modern society. Particularly, Deep Learning (DL) has several applications due to its ability to learn robust representations from images. Convolutional Neural Networks (CNN) is the main DL architecture for image classification. Based on the great attention that CNNs have had in the last years, we present a review of the use of CNN applied to different automatic processing tasks of fruit images: classification, quality control, and detection. We observe that in the last two years (2019–2020), the use of CNN for fruit recognition has greatly increased obtaining excellent results, either by using new models or with pre-trained networks for transfer learning. It is worth noting that different types of images are used in datasets according to the task performed. Besides, this article presents the fundamentals, tools, and two examples of the use of CNNs for fruit sorting and quality control.
Biometric identification and verification are essential mechanisms in modern society. Palm vein recognition is an emerging biometric technique, which has several advantages, especially in terms of security against forgery. Contactless palm vein systems are more suitable for real-world applications, but two of the major challenges of the state-of-the-art contributions are image deformations and time efficiency. In the present work, we propose a new method for palm vein recognition by combining DAISY descriptor and the Coarse-to-fine PatchMatch (CPM) algorithm in a parallel matching process. Our proposal aims at providing an effective and efficient technique to obtain similarity of palm vein images considering their displacements as discriminatory information. Extensive evaluation on three publicly available databases demonstrates that the discriminability of the proposed approach reaches the state-of-the-art results while it is considerably superior in time efficiency.
Fingerprint classification is a stage of biometric identification systems that aims to group fingerprints and reduce search times and computational complexity in the databases of fingerprints. The most recent works on this problem propose methods based on deep convolutional neural networks (CNNs) by adopting fingerprint images as inputs. These networks have achieved high classification performances, but with a high computational cost in the network training process, even by using high-performance computing techniques. In this paper, we introduce a novel fingerprint classification approach based on feature extractor models, and basic and modified extreme learning machines (ELMs), being the first time that this approach is adopted. The weighted ELMs naturally address the problem of unbalanced data, such as fingerprint databases. Some of the best and most recent extractors (Capelli02, Hong08, and Liu10), which are based on the most relevant visual characteristics of the fingerprint image, are considered. Considering the unbalanced classes for fingerprint identification schemes, we optimize the ELMs (standard, original weighted, and decay weighted) in terms of the geometric mean by estimating their hyper-parameters (regularization parameter, number of hidden neurons, and decay parameter). At the same time, the classic accuracy and penetration-rate metrics are computed for comparison purposes with the superior CNN-based methods reported in the literature. The experimental results show that weighted ELM with the presence of the golden-ratio in the weighted matrix (W-ELM2) overall outperforms the rest of the ELMs. The combination of the Hong08 extractor and W-ELM2 competes with CNNs in terms of the fingerprint classification efficacy, but the ELMs-based methods have been demonstrated their extremely fast training speeds in any context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.