Agriculture has always been an important economic and social sector for humans. Fruit production is especially essential, with a great demand from all households. Therefore, the use of innovative technologies is of vital importance for the agri-food sector. Currently artificial intelligence is one very important technological tool widely used in modern society. Particularly, Deep Learning (DL) has several applications due to its ability to learn robust representations from images. Convolutional Neural Networks (CNN) is the main DL architecture for image classification. Based on the great attention that CNNs have had in the last years, we present a review of the use of CNN applied to different automatic processing tasks of fruit images: classification, quality control, and detection. We observe that in the last two years (2019–2020), the use of CNN for fruit recognition has greatly increased obtaining excellent results, either by using new models or with pre-trained networks for transfer learning. It is worth noting that different types of images are used in datasets according to the task performed. Besides, this article presents the fundamentals, tools, and two examples of the use of CNNs for fruit sorting and quality control.
The G 0 I distribution is able to characterize different regions in monopolarized SAR imagery. It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter and a texture parameter. This paper presents a new proposal for feature extraction and region discrimination in SAR imagery, using the geodesic distance as a measure of dissimilarity between G 0 I models. We derive geodesic distances between models that describe several practical situations, assuming the number of looks known, for same and different texture and for same and different scale. We then apply this new tool to the problems of (i) identifying edges between regions with different texture, and (ii) quantify the dissimilarity between pairs of samples in actual SAR data. We analyze the advantages of using the geodesic distance when compared to stochastic distances.
Dengue fever is a serious and growing public health problem in Latin America and elsewhere, intensified by climate change and human mobility. This paper reviews the approaches to the epidemiological prediction of dengue fever using the One Health perspective, including an analysis of how Machine Learning techniques have been applied to it and focuses on the risk factors for dengue in Latin America to put the broader environmental considerations into a detailed understanding of the small-scale processes as they affect disease incidence. Determining that many factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors over larger geographic areas than those currently studied is lacking to determine which predictors are the most effective. In addition, it provides insight into techniques of Machine Learning used for future predictive models, as well as general workflow for Machine Learning projects of dengue fever.
Fingerprint classification is a stage of biometric identification systems that aims to group fingerprints and reduce search times and computational complexity in the databases of fingerprints. The most recent works on this problem propose methods based on deep convolutional neural networks (CNNs) by adopting fingerprint images as inputs. These networks have achieved high classification performances, but with a high computational cost in the network training process, even by using high-performance computing techniques. In this paper, we introduce a novel fingerprint classification approach based on feature extractor models, and basic and modified extreme learning machines (ELMs), being the first time that this approach is adopted. The weighted ELMs naturally address the problem of unbalanced data, such as fingerprint databases. Some of the best and most recent extractors (Capelli02, Hong08, and Liu10), which are based on the most relevant visual characteristics of the fingerprint image, are considered. Considering the unbalanced classes for fingerprint identification schemes, we optimize the ELMs (standard, original weighted, and decay weighted) in terms of the geometric mean by estimating their hyper-parameters (regularization parameter, number of hidden neurons, and decay parameter). At the same time, the classic accuracy and penetration-rate metrics are computed for comparison purposes with the superior CNN-based methods reported in the literature. The experimental results show that weighted ELM with the presence of the golden-ratio in the weighted matrix (W-ELM2) overall outperforms the rest of the ELMs. The combination of the Hong08 extractor and W-ELM2 competes with CNNs in terms of the fingerprint classification efficacy, but the ELMs-based methods have been demonstrated their extremely fast training speeds in any context.
Raspberries are fruit of great importance for human beings. Their products are segmented by quality. However, estimating raspberry quality is a manual process carried out at the reception of the fruit processing plant, and is thus exposed to factors that could distort the measurement. The agriculture industry has increased the use of deep learning (DL) in computer vision systems. Non-destructive and computer vision equipment and methods are proposed to solve the problem of estimating the quality of raspberries in a tray. To solve the issue of estimating the quality of raspberries in a picking tray, prototype equipment is developed to determine the quality of raspberry trays using computer vision techniques and convolutional neural networks from images captured in the visible RGB spectrum. The Faster R–CNN object-detection algorithm is used, and different pretrained CNN networks are evaluated as a backbone to develop the software for the developed equipment. To avoid imbalance in the dataset, an individual object-detection model is trained and optimized for each detection class. Finally, both hardware and software are effectively integrated. A conceptual test is performed in a real industrial scenario, thus achieving an automatic evaluation of the quality of the raspberry tray, in this way eliminating the intervention of the human expert and eliminating errors involved in visual analysis. Excellent results were obtained in the conceptual test performed, reaching in some cases precision of 100%, reducing the evaluation time per raspberry tray image to 30 s on average, allowing the evaluation of a larger and representative sample of the raspberry batch arriving at the processing plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.