Agriculture has always been an important economic and social sector for humans. Fruit production is especially essential, with a great demand from all households. Therefore, the use of innovative technologies is of vital importance for the agri-food sector. Currently artificial intelligence is one very important technological tool widely used in modern society. Particularly, Deep Learning (DL) has several applications due to its ability to learn robust representations from images. Convolutional Neural Networks (CNN) is the main DL architecture for image classification. Based on the great attention that CNNs have had in the last years, we present a review of the use of CNN applied to different automatic processing tasks of fruit images: classification, quality control, and detection. We observe that in the last two years (2019–2020), the use of CNN for fruit recognition has greatly increased obtaining excellent results, either by using new models or with pre-trained networks for transfer learning. It is worth noting that different types of images are used in datasets according to the task performed. Besides, this article presents the fundamentals, tools, and two examples of the use of CNNs for fruit sorting and quality control.
Radio-over-fiber (RoF) orthogonal frequency division multiplexing (OFDM) systems have been revealed as the solution to support secure, cost-effective, and high-capacity wireless access for the future telecommunication systems. Unfortunately, the bandwidth-distance product in these schemes is mainly limited by phase noise that comes from the laser linewidth, as well as the chromatic fiber dispersion. On the other hand, the single-hidden layer feedforward neural network subject to the extreme learning machine (ELM) algorithm has been widely studied in regression and classification problems for different research fields, because of its good generalization performance and extremely fast learning speed. In this work, ELMs in the real and complex domains for direct-detection OFDM-based RoF schemes are proposed for the first time. These artificial neural networks are based on the use of pilot subcarriers as training samples and data subcarriers as testing samples, and consequently, their learning stages occur in real-time without decreasing the effective transmission rate. Regarding the feasible pilot-assisted equalization method, the effectiveness and simplicity of the ELM algorithm in the complex domain are highlighted by evaluation of a QPSK-OFDM signal over an additive white Gaussian noise channel at diverse laser linewidths and chromatic fiber dispersion effects and taking into account several OFDM symbol periods. Considering diverse relationships between the fiber transmission distance and the radio frequency (for practical design purposes) and the duration of a single OFDM symbol equal to 64 ns, the fully-complex ELM followed by the real ELM outperform the pilot-based correction channel in terms of the system performance tolerance against the signal-to-noise ratio and the laser linewidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.