Abstract. Determining the exact point of ripening and harvesting of the grapes is essential for obtaining a wine of quality. Recent methods for determining the ripening of the grapes are based on visual inspection of the seed. These methods have the advantage of being simple and of low-cost, but they are prone to human error, and a large number of samples are required to be analyzed in order to obtain representative information of the reality. Currently, the analysis of the seed is made using images obtained with a digital camera, which have major problems as the existence of shadows and highlights. This paper proposes a segmentation method of grape seed in complex images based on artificial neural networks and color images. The method is robust to imperfections in the images, which permits that this type of analysis is installed in reality.
RESUMO-A soja é uma das principais lavouras do mundo e a operação de secagem desempenha importante etapa em seu beneficiamento. O presente estudo teve como objetivo avaliar modelos para previsão da difusividade efetiva da soja, parâmetro este importante nos estudos de secagem. Utilizou-se o método das tangentes para a determinação das difusividades da soja em função da umidade do grão e da temperatura do ar de secagem. A correlação proposta por Dotto et al. (2018) foi a que apresentou menor erro médio (0,048%) para os dados médios. Para os dados puntuais de difusividade, foram necessárias modificações no modelo, o que proporcionou um erro máximo de 2,6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.