A number of laboratories have sought to elucidate the role of nitric oxide (NO) in both acute and chronic inflammatory diseases. It is now well appreciated that NO can influence many aspects of the inflammatory cascade ranging from its own expression to recruitment of leucocytes to the effected tissue. With the advent of mice selectively deficient in the various isoforms of nitric oxide synthase (NOS), the role that NO may play in various disease states can now be examined in vivo. One such syndrome that has gained much attention in recent years is ischaemia and reperfusion-induced tissue injury. Ischaemia-reperfusion (I/R) injury is an important clinical consideration in situations such as transplantation, trauma, liver or bowel resection and haemorrhagic shock. A hallmark of I/R is the production of reactive oxygen species (ROS) during the reperfusion phase and it is thought that the production of ROS mediate much of the post-ischaemic tissue injury. This review will examine the current state of knowledge regarding the regulatory mechanisms by which NO can influence various aspects of the inflammatory cascade as well as its role in a model of I/R injury in vivo.
The mouse model of liver ischemia and reperfusion injury has proven to be valuable for our understanding of the role that reactive oxygen and nitrogen metabolites play in postischemic tissue injury. This methods paper provides a detailed protocol for inducing partial liver ischemia followed by reperfusion. Liver ischemia is induced in anesthetized mice by cross-clamping the hepatic artery and portal vein for varying lengths of time resulting in deprivation of blood flow to approximately of 70% of the liver. Restoration of blood flow to the ischemic lobes enhances superoxide production concomitant with a rapid and marked decrease in the bioavailability of nitric oxide resulting in alterations in the redox state of the liver in favor of a more oxidative environment. This hepatocellular oxidative stress induces the activation of oxidant-sensitive transcription factors followed by the upregulation of pro-inflammatory cytokines and mediators that ultimately lead to liver injury. This model can be induced in any strain or sex of mouse and requires 1-2 months of practice to become proficient in the surgery and animal manipulation. The role of different reactive metabolites of oxygen and nitrogen may be evaluated using genetically-engineered mice as well as selective molecular, cellular and/or pharmacological agents.
It is well known that transfer of CD4+CD45RBhigh (naïve) T cells into syngeneic lymphocyte-deficient mice induces chronic colitis. However, no studies have reported the presence of small bowel inflammation in this T cell-dependent model. Therefore, the objective of this study was to evaluate and compare small and large bowel inflammation induced by transfer of naïve T cells into two different immunodeficient recipient mice. T and B cell-deficient recombinase activating gene 1-deficient [RAG knockout (KO)] and T cell-deficient T cell receptor-beta x T cell receptor-delta double-deficient (TCR KO) mice were reconstituted with wild-type naïve T cells and observed for signs of disease. We found that reconstituted RAG KO mice developed moderate to severe colitis and inflammation of the entire small intestine at 6-8 wk after T cell transfer. Adoptive transfer of naïve T cells into TCR KO mice induced a milder form of chronic colitis and small bowel inflammation that was confined primarily to the duodenum at 10-12 wk after T cell transfer. T helper cell 1 and macrophage-derived proinflammatory cytokine mRNA levels correlated well with the localization and severity of the chronic large and small bowel inflammation. In addition, we observed comparable homing and expansion of donor lymphocytes in the gut and secondary lymphoid tissues of both recipients. Taken together, our data demonstrate that transfer of naïve T cells into immunodeficient recipient mice induces both chronic small and large bowel inflammation and that the presence of B cells in the TCR KO recipients may play a role in regulating chronic intestinal inflammation.
Hepatic resection with concomitant periods of ischemia and reperfusion (I/R) is a common occurrence in resectional surgery as well as reduced-size liver transplantation (e.g., split liver or living donor transplantation). However, the I/R induced by these types of surgical manipulations may impair liver regeneration, ultimately leading to liver failure. The objectives of the study were to develop a murine model of reduced-size liver I/R and assess the role of gender in this model of hepatocellular injury. We found that 100% of female mice survived the surgery indefinitely, whereas all male mice had greater initial liver injury and died within 5 days after surgery. The protective effect observed in females appeared to be due to ovarian 17beta-estradiol, as ovariectomy of females or administration of a selective estrogen antagonist to female mice resulted in enhanced liver injury and greater mortality following reduced-size liver I/R. Conversely, 17beta-estradiol-treated male mice exhibited less hepatocellular damage and survived indefinitely. Taken together, these data demonstrate an estrogen-mediated protective pathway(s) that limits or attenuates hepatocellular injury induced by reduced-size liver I/R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.