The results of an investigation of the probability of earthquake damage to nonstructural unreinforced masonry (URM) components are presented. The components include parapets, chimneys, and out-of-plane loaded facades typical of low-rise pre-1940 construction in Australia and New Zealand. The study is based on a street survey of component geometry, in situ data on material strength, and simplified mechanical models. Uncertainties in capacity and demand were quantified based on, respectively, stochastic and deterministic approaches. The damage probabilities were compared with relevant guidelines and empirical damage data from three earthquakes. The study established a link between the qualitative damage states reported in existing guidelines and the quantitative URM component damage states. While some median damage state thresholds correlated well with the data from the guidelines, a larger dispersion value was found in the current study due to the large variations in component properties. Comparisons with empirical data suggest that the developed fragility data provide a realistic estimate of nonstructural component damage that occurred in similar buildings, with a reasonable level of conservatism. The outcome is useful in rapid assessment of the seismic risks due to nonstructural component collapse in URM precincts.
K E Y W O R D Schimney, clay brick, HAZUS, nonstructural, parapet, seismic risk, rapid assessment, unreinforced masonry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.