Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change–induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change–induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change–induced range shifts.
Does climate determine species' ranges? Rapid rates of anthropogenic warming make this classic ecological question especially relevant. We ask whether climate controls range limits by quantifying relationships between climatic variables (precipitation, temperature) and tree growth across the altitudinal ranges of six Pacific Northwestern conifers on Mt. Rainier, Washington, USA. Results for three species (Abies amabilis, Callitropsis nootkatensis, Tsuga mertensiana) whose upper limits occur at treeline (> 1600 m) imply climatic controls on upper range limits, with low growth in cold and high snowpack years. Annual growth was synchronized among individuals at upper limits for these high-elevation species, further suggesting that stand-level effects such as climate constrain growth more strongly than local processes. By contrast, at lower limits climatic effects on growth were weak for these high-elevation species. Growth-climate relationships for three low-elevation species (Pseudotsuga menziesii, Thuja plicata, Tsuga heterophylla) were not consistent with expectations of climatic controls on upper limits, which are located within closed-canopy forest (< 1200 m). Annual growth of these species was poorly synchronized among individuals. Our results suggest that climate controls altitudinal range limits at treeline, while local drivers (perhaps biotic interactions) influence growth in closed-canopy forests. Climate-change-induced range shifts in closed-canopy forests will therefore be difficult to predict accurately.
Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures ('forcing') typically triggers growth initiation, but many trees also require exposure to cool temperatures ('chilling') while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm edges of its distribution.
Understanding how climate affects tree growth is essential for assessing climate change impacts on forests but can be confounded by effects of competition, which strongly influences tree responses to climate. We characterized the joint influences of tree size, competition, and climate on diameter growth using hierarchical Bayesian methods applied to permanent sample plot data from the montane forests of Mount Rainier National Park, Washington State, USA, which are mostly comprised of Abies amabilis Douglas ex Forbes, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, and Thuja plicata Donn ex D. Don. Individual growth was sensitive to climate under low but not high competition, likely because tree ability to increase growth under more favorable climates (generally greater energy availability) was constrained by competition, with important variation among species. Thus, climate change will likely increase individual growth most in uncrowded stands with lower competition. However, crowded stands have more and (or) larger trees, conferring greater capacity for aggregate absolute growth increases. Due to these contrasting effects, our models predicted that climate change will lead to greater stand-scale growth increases in stands with medium compared with low crowding but similar increases in stands with medium and high crowding. Thus, competition will mediate the impacts of climate change on individual-and stand-scale growth in important but complex ways.Key words: climate change, competition, Pacific Northwest, stand structure, water balance.Résumé : Il est essentiel de comprendre comment le climat influence la croissance des arbres pour évaluer les impacts des changements climatiques sur la croissance des forêts, mais les effets du climat peuvent être confondus avec ceux de la compétition qui influence grandement la réaction des arbres au climat. Nous avons caractérisé l'influence conjointe de la taille des arbres, de la compétition et du climat sur la croissance en diamètre à l'aide de méthodes hiérarchiques bayésiennes appliquées à des données provenant de placettes échantillons permanentes dans les forêts montagnardes du parc national du mont Rainier dans l'État de Washington, aux États-Unis. Ces forêts sont surtout composées d'Abies amabilis Douglas ex Forbes, de Tsuga heterophylla (Raf.) Sarg., de Pseudotsuga menziesii (Mirb.) Franco et de Thuja plicata Donn ex D. Don. La croissance des arbres individuels était sensible au climat lorsque la compétition était faible mais pas lorsqu'elle était forte, probablement parce que la capacité des arbres à augmenter leur croissance sous des climats plus favorables (généralement plus de disponibilité d'énergie) était limitée par la compétition et la variation entre les espèces était importante. Ainsi, les changements climatiques augmenteront probablement davantage la croissance des arbres individuels dans les peuplements plus ouverts où la compétition est faible. Cependant, les peuplements denses comportent plus d'arbres ou des arbres plus ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.