The PECAN field campaign assembled a rich array of observations from lower-tropospheric profiling systems, mobile radars and mesonets, and aircraft over the Great Plains during June-July 2015 to better understand nocturnal mesoscale convective systems and their relationship with the stable boundary layer, the low-level jet, and atmospheric bores.
Lipoteichoic acids (LTA), cell wall components of gram-positive bacteria, have been reported to induce various inflammatory mediators and to play a key role in gram-positive-microbe-mediated septic shock. In a large number of these studies, investigators used commercially available LTA purified from a variety of gram-positive bacteria, including Staphylococcus aureus, Bacillus subtilis, and Streptococcus sanguis. We report here that, although these commercially available LTA could be readily shown to stimulate production of nitric oxide (NO) in RAW 264.7 mouse macrophages, the activity was dramatically inhibited by polymyxin B, a relatively specific inhibitor of endotoxin biological activity. One-step purification of the commercially available S. aureus LTA using hydrophobic interaction chromatography resulted in two well-separated peak fractions, one highly enriched for LTA and a second highly enriched for endotoxin. The LTA-enriched fractions did not induce production of NO in RAW 264.7 macrophages, although they caused a dose-dependent induction of NO in the presence of low concentrations of gamma interferon (IFN-␥) (which by itself induced little NO), regardless of the presence of polymyxin B. In contrast, the endotoxin-enriched fractions by themselves inhibited in high levels of NO in RAW 264.7 macrophages but activity was almost completely inhibited in the presence of polymyxin B. Consistent with these findings, our data also indicate that commercial LTA preparations from S. aureus, B. subtilis, and S. sanguis were not able to induce NO from lipopolysaccharidehyporesponsive C3H/HeJ mouse peritoneal macrophages, but in the presence of IFN-␥, these LTA preparations were able to induce relatively high levels of NO from C3H/HeJ macrophages. These results indicate that commercially available LTA can contain contaminating and potentially significant levels of endotoxin that can be expected to contribute to the putative macrophage-stimulating effects of LTA as assessed by NO production. The fact that the purified LTA, by itself, was not able to induce significant levels of NO secretion in RAW 264.7 macrophages supports the conclusion that caution in attributing high-level biological activity to this microbial cell wall constituent should be exercised.
This study documents atmospheric bores and other convergent boundaries in the southern Great Plains’ nocturnal environment during the IHOP_2002 summer campaign. Observational evidence demonstrates that convective outflows routinely generate bores. Statistically resampled flow regimes, derived from an adaptation of hydraulic theory, agree well with observations. Specifically, convective outflows within the observed environments are likely to produce a partially blocked flow regime, which is a favorable condition for generating a bore. Once a bore develops, the direction of movement generally follows the orientation of the bulk shear vector between the nose of the nocturnal low-level jet and a height of 1.5 or 2.5 km AGL. This relationship is believed to be a consequence of wave trapping through the curvature of the horizontal wind with respect to height. This conclusion comes after analyzing the profile of the Scorer parameter. Overall, these findings provide an impetus for future investigations aimed at understanding and predicting nocturnal deep convection over this region.
Previous studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems.
This investigation explores the relationship among bores, gravity waves, and convection within the nocturnal environment through the utilization of measurements taken during the International H2O Project (IHOP_2002) over the Southern Great Plains. The most favorable conditions for deep convection were found to occur within the boundary layer during the late afternoon and early evening hours in association with the diurnal cycle of solar insolation. At night, the layers most favorable for deep convection occur at and above the height of the nocturnal southerly low-level jet in association with distinct maxima in both the southerly and westerly components of the wind. Observations taken during the passage of 13 nocturnal wave disturbances over a comprehensive profiling site show the average maximum and net upward displacements with these waves were estimated to be ~900 and ~660 m, respectively. The lifting was not limited to the stable boundary layer, but reached into the conditionally unstable layers aloft. Since the net upward displacements persisted for many hours as the disturbances propagated away from the convection, areas well in excess of 10 000 km2 are likely impacted by this ascent. This lifting can directly maintain existing convection and aid in the initiation of new convection by reducing the convective inhibition in the vicinity of the active convection. In agreement with past studies, strong ascent in the lowest ~1.5 km was generally consistent with the passage of a bore. However, separate wave responses also occurred well above the bores, and low-frequency gravity waves may explain such disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.