The early transfusion of plasma is important to ensure optimal survival of patients with traumatic hemorrhage. In military and remote or austere civilian settings, it may be impossible to move patients to hospital facilities within the first few hours of injury. A dried plasma product with reduced logistical requirements is needed to enable plasma transfusion where medically needed, instead of only where freezers and other equipment are available. First developed in the 1930s, pooled lyophilized plasma was widely used by British and American forces in WWII and the Korean War. Historical dried plasma products solved the logistical problem but were abandoned because of disease transmission. Modern methods to improve blood safety have made it possible to produce safe and effective dried plasma. Dried plasma products are available in France, Germany, South Africa, and a limited number of other countries. However, no product is available in the US. Promising products are in development that employ different methods of drying, pathogen reduction, pooling, packaging, and other approaches. Although challenges exist, the in vitro and in vivo data suggest that these products have great potential to be safe and effective. The history, state of the science, and recent developments in dried plasma are reviewed.
Stress fractures are a common overuse problem among military trainees resulting in preventable morbidity, prolonged training, and long-term disability following military service. Femoral neck stress fractures (FNSFs) account for 2% of all stress fractures but result in disproportionate burden in terms of cost and convalescence. The purpose of this study was to describe and investigate FNSF in U.S. Air Force basic trainees and to present new data on risks factors for developing FNSF. We examined 47 cases of FNSF occurring in Air Force basic trainees between 2008 and 2011 and 94 controls using a matched case-control model. Analysis with t tests and conditional logistic regression found the risk of FNSF was not associated with body mass index or abdominal circumference. Female gender (p < 0.001) and slower run time significantly increased risk of FNSF (1.49 OR, p < 0.001; 95% CI 1.19-1.86). A greater number of push-up and sit-up repetitions significantly reduced risk of FNSF (0.55 OR, p = 0.03; 95% CI 0.32-0.93; 0.62 OR, p = 0.04; 95% CI 0.4-0.98) for females. In this study body mass index was not correlated with FNSF risk; however, physical fitness level on arrival to training and female gender were significantly associated with risk of FNSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.