Plasmonic materials (PMs), featuring large static or dynamic tunability, have significant impact on the optical properties due to their potential for applications in transformation optics, telecommunications, energy, and biomedical areas. Among PMs, the carrier concentration and mobility are two tunable parameters, which control the plasma frequency of a metal. Here, we report on large static and dynamic tunability in wavelengths up to 640 nm in Al-doped ZnO based transparent conducting degenerate semiconductors by controlling both thickness and applied voltages. This extreme tunability is ascribed to an increase in carrier concentration with increasing thickness as well as voltage-induced thermal effects that eventually diminish the carrier concentration and mobility due to complex chemical transformations in the multilayer growth process. These observations could pave the way for optical manipulation of this class of materials for potential transformative applications.
We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T s ). The films were found to be crystalline with the electrical resistivity close to 1.1 Â 10 À3 X cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T s of 400 C, however, a slight decrease in the bandgap was noticed above 400 C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at $110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels. V C 2013 AIP Publishing LLC. [http://dx
a b s t r a c tWe present an integrated platform comprised of a biomimetic substrate and physiologically aligned human pluripotent stem cell-derived cardiomyocytes (CMs) with optical detection and algorithms to monitor subtle changes in cardiac properties under various conditions. In the native heart, anisotropic tissue structures facilitate important concerted mechanical contraction and electrical propagation. To recapitulate the architecture necessary for a physiologically accurate heart response, we have developed a simple way to create large areas of aligned CMs with improved functional properties using shrink-wrap film. Combined with simple bright field imaging, obviating the need for fluorescent labels or beads, we quantify and analyze key cardiac contractile parameters. To evaluate the performance capabilities of this platform, the effects of two drugs, E-4031 and isoprenaline, were examined. Cardiac cells supplemented with E-4031 exhibited an increase in contractile duration exclusively due to prolonged relaxation peak. Notably, cells aligned on the biomimetic platform responded detectably down to a dosage of 3 nM E-4031, which is lower than the IC 50 in the hERG channel assay. Cells supplemented with isoprenaline exhibited increased contractile frequency and acceleration. Interestingly, cells grown on the biomimetic substrate were more responsive to isoprenaline than those grown on the two control surfaces, suggesting topography may help induce more mature ion channel development. This simple and low-cost platform could thus be a powerful tool for longitudinal assays as well as an effective tool for drug screening and basic cardiac research.
We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.
Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and optical measurements. The Film resistivity was measured as a function of Zn:Al cycle ratios as well as temperature for films grown at various substrate temperature used for ALD deposition. The resistivity of the ALD grown films decreases significantly, and so as the increase in the carrier concentration as the cycle ratio increases. The systematic measurements of temperature dependence of resistivity of films at various cycle ratios clearly demonstrate the crossover of the metal–semiconductor–insulator phase with the function of temperature as well as the cycle ratios. The average transmission of all films is greater than 85% and the optical absorption increases significantly in the visible region as the cycle ratio increases. The authors observed a remarkable dependence of photoresistance on electrical conductivity for ALD-grown films with varying cycle ratios, which control the Al content in the film. Our results suggest that Al3+ ions are incorporated as substitutional or interstitial sites of the ZnO matrix. However, an addition of an excessive amount of Al content causes the formation of Al2O3 and related clusters as carrier traps opposed to electron donors, resulting in an increase in the resistivity and other associated phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.