Abstract-Learning motor skills for robots is a hard task. In particular, a high number of degrees-of-freedom in the robot can pose serious challenges to existing reinforcement learning methods, since it leads to a highdimensional search space. However, complex robots are often intrinsically redundant systems and, therefore, can be controlled using a latent manifold of much smaller dimensionality. In this paper, we present a novel policy search method that performs efficient reinforcement learning by uncovering the low-dimensional latent space of actuator redundancies. In contrast to previous attempts at combining reinforcement learning and dimensionality reduction, our approach does not perform dimensionality reduction as a preprocessing step but naturally combines it with policy search. Our evaluations show that the new approach outperforms existing algorithms for learning motor skills with high-dimensional robots.
Manipulation skills involving contact and friction are inherent to many robotics tasks. Using the class of motor primitives for peg-in-hole like insertions, we study how robots can learn such skills. Dynamic Movement Primitives (DMP) are a popular way of extracting such policies through behaviour cloning (BC) but can struggle in the context of insertion. Policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contactrich manipulation. However, it is not clear how to best do this with DMPs. As a result, we consider several possible ways for adapting a DMP formulation and propose "residual Learning from Demonstration" (rLfD), a framework that combines DMPs with Reinforcement Learning (RL) to learn a residual correction policy. Our evaluations suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs and enables transfer to different geometries and frictions through few-shot task adaptation. The proposed framework is evaluated on a set of tasks. A simulated robot and a physical robot have to successfully insert pegs, gears and plugs into their respective sockets. Other material and videos accompanying this paper are provided at https://sites.google.com/view/rlfd/.
Abstract-We present a methodology for fast prototyping of morphologies and controllers for robot locomotion. Going beyond simulation-based approaches, we argue that the form and function of a robot, as well as their interplay with realworld environmental conditions are critical. Hence, fast design and learning cycles are necessary to adapt robot shape and behavior to their environment. To this end, we present a combination of laminate robot manufacturing and sampleefficient reinforcement learning. We leverage this methodology to conduct an extensive robot learning experiment. Inspired by locomotion in sea turtles, we design a low-cost crawling robot with variable, interchangeable fins. Learning is performed using both bio-inspired and original fin designs in an artificial indoor environment as well as a natural environment in the Arizona desert. The findings of this study show that static policies developed in the laboratory do not translate to effective locomotion strategies in natural environments. In contrast to that, sample-efficient reinforcement learning can help to rapidly accommodate changes in the environment or the robot.
Humans and animals are capable of quickly learning new behaviours to solve new tasks. Yet, we often forget that they also rely on a highly specialized morphology that co-adapted with motor control throughout thousands of years. Although compelling, the idea of co-adapting morphology and behaviours in robots is often unfeasible because of the long manufacturing times, and the need to redesign an appropriate controller for each morphology. In this paper, we propose a novel approach to automatically and efficiently co-adapt a robot morphology and its controller. Our approach is based on recent advances in deep reinforcement learning, and specifically the soft actor critic algorithm. Key to our approach is the possibility of leveraging previously tested morphologies and behaviors to estimate the performance of new candidate morphologies. As such, we can make full use of the information available for making more informed decisions, with the ultimate goal of achieving a more data-efficient co-adaptation (i.e., reducing the number of morphologies and behaviors tested). Simulated experiments show that our approach requires drastically less design prototypes to find good morphology-behaviour combinations, making this method particularly suitable for future co-adaptation of robot designs in the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.