Manipulation skills involving contact and friction are inherent to many robotics tasks. Using the class of motor primitives for peg-in-hole like insertions, we study how robots can learn such skills. Dynamic Movement Primitives (DMP) are a popular way of extracting such policies through behaviour cloning (BC) but can struggle in the context of insertion. Policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contactrich manipulation. However, it is not clear how to best do this with DMPs. As a result, we consider several possible ways for adapting a DMP formulation and propose "residual Learning from Demonstration" (rLfD), a framework that combines DMPs with Reinforcement Learning (RL) to learn a residual correction policy. Our evaluations suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs and enables transfer to different geometries and frictions through few-shot task adaptation. The proposed framework is evaluated on a set of tasks. A simulated robot and a physical robot have to successfully insert pegs, gears and plugs into their respective sockets. Other material and videos accompanying this paper are provided at https://sites.google.com/view/rlfd/.
Videos provide a rich source of information, but it is generally hard to extract dynamical parameters of interest. Inferring those parameters from a video stream would be beneficial for physical reasoning. Robots performing tasks in dynamic environments would benefit greatly from understanding the underlying environment motion, in order to make future predictions and to synthesize effective control policies that use this inductive bias. Online physical reasoning is therefore a fundamental requirement for robust autonomous agents. When the dynamics involves multiple modes (due to contacts or interactions between objects) and sensing must proceed directly from a rich sensory stream such as video, then traditional methods for system identification may not be well suited. We propose an approach wherein fast parameter estimation can be achieved directly from video. We integrate a physically based dynamics model with a recurrent variational autoencoder, by introducing an additional loss to enforce desired constraints. The model, which we call Vid2Param, can be trained entirely in simulation, in an end-to-end manner with domain randomization, to perform online system identification, and make probabilistic forward predictions of parameters of interest. This enables the resulting model to encode parameters such as position, velocity, restitution, air drag and other physical properties of the system. We illustrate the utility of this in physical experiments wherein a PR2 robot with a velocity constrained arm must intercept an unknown bouncing ball with partly occluded vision, by estimating the physical parameters of this ball directly from the video trace after the ball is released.
Scaling model-based inverse reinforcement learning (IRL) to real robotic manipulation tasks with unknown dynamics remains an open problem.The key challenges lie in learning good dynamics models, developing algorithms that scale to high-dimensional state-spaces and being able to learn from both visual and proprioceptive demonstrations. In this work, we present a gradient-based inverse reinforcement learning framework that utilizes a pre-trained visual dynamics model to learn cost functions when given only visual human demonstrations. The learned cost functions are then used to reproduce the demonstrated behavior via visual model predictive control. We evaluate our framework on hardware on two basic object manipulation tasks.
Context plays a significant role in the generation of motion for dynamic agents in interactive environments. This work proposes a modular method that utilises a learned model of the environment for motion prediction. This modularity explicitly allows for unsupervised adaptation of trajectory prediction models to unseen environments and new tasks by relying on unlabelled image data only. We model both the spatial and dynamic aspects of a given environment alongside the per agent motions. This results in more informed motion prediction and allows for performance comparable to the state-of-the-art. We highlight the model's prediction capability using a benchmark pedestrian prediction problem and a robot manipulation task and show that we can transfer the predictor across these tasks in a completely unsupervised way. The proposed approach allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.