The emerging neurocomputational vision of humans as embodied, ecologically embedded, social agents-who shape and are shaped by their environment-offers a golden opportunity to revisit and revise ideas about the physical and information-theoretic underpinnings of life, mind, and consciousness itself. In particular, the active inference framework (AIF) makes it possible to bridge connections from computational neuroscience and robotics/AI to ecological psychology and phenomenology, revealing common underpinnings and overcoming key limitations. AIF opposes the mechanistic to the reductive, while staying fully grounded in a naturalistic and information-theoretic foundation, using the principle of free energy minimization. The latter provides a theoretical basis for a unified treatment of particles, organisms, and interactive machines, spanning from the inorganic to organic, non-life to life, and natural to artificial agents. We provide a brief introduction to AIF, then explore its implications for evolutionary theory, ecological psychology, embodied phenomenology, and robotics/AI research. We conclude the paper by considering implications for machine consciousness.
Although a manipulator must interact with objects in terms of their full complexity, it is the qualitative structure of the objects in an environment and the relationships between them which define the composition of that environment, and allow for the construction of efficient plans to enable the completion of various elaborate tasks. In this paper we present an algorithm which redescribes a scene in terms of a layered representation, from labeled point clouds of the objects in the scene. The representation includes a qualitative description of the structure of the objects, as well as the symbolic relationships between them. This is achieved by constructing contact point networks of the objects, which are topological representations of how each object is used in that particular scene, and are based on the regions of contact between objects. We demonstrate the performance of the algorithm, by presenting results from the algorithm tested on a database of stereo images. This shows a high percentage of correctly classified relationships, as well as the discovery of interesting topological features. This output provides a layered representation of a scene, giving symbolic meaning to the inter-object relationships useful for subsequent commonsense reasoning and decision making.
Reasoning about object affordances allows an autonomous agent to perform generalised manipulation tasks among object instances. While current approaches to grasp affordance estimation are effective, they are limited to a single hypothesis. We present an approach for detection and extraction of multiple grasp affordances on an object via visual input. We define semantics as a combination of multiple attributes, which yields benefits in terms of generalisation for grasp affordance prediction. We use Markov Logic Networks to build a knowledge base graph representation to obtain a probability distribution of grasp affordances for an object. To harvest the knowledge base, we collect and make available a novel dataset that relates different semantic attributes. We achieve reliable mappings of the predicted grasp affordances on the object by learning prototypical grasping patches from several examples. We show our method's generalisation capabilities on grasp affordance prediction for novel instances and compare with similar methods in the literature. Moreover, using a robotic platform, on simulated and real scenarios, we evaluate the success of the grasping task when conditioned on the grasp affordance prediction.
In this work, we present a sampling-based approach to trajectory classification which enables automated high-level reasoning about topological classes of trajectories. Our approach is applicable to general configuration spaces and relies only on the availability of collision free samples. Unlike previous sampling-based approaches in robotics which use graphs to capture information about the pathconnectedness of a configuration space, we construct a multiscale approximation of neighborhoods of the collision free configurations based on filtrations of simplicial complexes. Our approach thereby extracts additional homological information which is essential for a topological trajectory classification. We propose a multiscale classification algorithm for trajectories in configuration spaces of arbitrary dimension and for sets of trajectories starting and ending in two fixed points. Using a cone construction, we then generalize this approach to classify sets of trajectories even when trajectory start and end points are allowed to vary in path-connected subsets. We furthermore show how an augmented filtration of simplicial complexes based on an arbitrary function on the configuration space, such as a costmap, can be defined to incorporate additional constraints. We present an evaluation of our approach in 2, 3, 4 and 6 dimensional configuration spaces in simulation and in real-world experiments using a Baxter robot and motion capture data 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.