The accumulation of sphingolipids in obesity leads to impairments in insulin sensitivity and mitochondrial metabolism, but the precise species driving these defects is unclear. We have modeled these obesity-induced effects in cultured C2C12 myotubes, using BSA-conjugated palmitate to increase synthesis of endogenous sphingolipids and to inhibit insulin signaling and oxidative phosphorylation. Palmitate (a) induced the accumulation of sphingomyelin (SM) precursors such as sphinganine, dihydroceramide, and ceramide; (b) inhibited insulin stimulation of a central modulator of anabolic metabolism, Akt/PKB; (c) inhibited insulin-stimulated glycogen synthesis; and (d) decreased oxygen consumption and ATP synthesis. Under these conditions, palmitate failed to alter levels of SMs, which are the most abundant sphingolipids, suggesting that they are not the primary intermediates accounting for the deleterious palmitate effects. Treating cells with a pharmacological inhibitor of SM synthase or using CRISPR to knock out the Sms2 gene recapitulated the palmitate effects by inducing the accumulation of SM precursors and impairing insulin signaling and mitochondrial metabolism. To profile the sphingolipids that accumulate in obesity, we performed lipidomics on quadriceps muscles from obese mice with impaired glucose tolerance. Like the cultured myotubes, these tissues accumulated ceramides but not SMs. Collectively, these data suggest that SM precursors such as ceramides, rather than SMs, are likely nutritional antagonists of metabolic function in skeletal muscle.
Proximal tubular epithelial cells are highly energy demanding. Their energy need is covered mostly from mitochondrial fatty acid oxidation. Whether derailments in fatty acid metabolism and mitochondrial dysfunction are forerunners of tubular damage has been suggested but is not entirely clear. Here we modeled mitochondrial overload by creating mice lacking the enzyme carnitine acetyltransferase (CrAT) in the proximal tubules, thus limiting a primary mechanism to export carbons under conditions of substrate excess. Mice developed tubular disease and, interestingly, secondary glomerulosclerosis. This was accompanied by increased levels of apoptosis regulator and fibrosis markers, increased oxidative stress, and abnormal profiles of acylcarnitines and organic acids suggesting profound impairments in all major forms of nutrient metabolism. When mice with CrAT deletion were fed a high-fat diet, kidney disease was more severe and developed faster. Primary proximal tubular cells isolated from the knockout mice displayed energy deficit and impaired respiration before the onset of pathology, suggesting mitochondrial respiratory abnormalities as a potential underlying mechanism. Our findings support the hypothesis that derailments of mitochondrial energy metabolism may be causative to chronic kidney disease. Our results also suggest that tubular injury may be a primary event followed by secondary glomerulosclerosis, raising the possibility that focusing on normalizing tubular cell mitochondrial function and energy balance could be an important preventative strategy.
An upstream metabolic perturbation comprising medium- and long-chain dicarboxyl and hydroxyl acylcarnitines, likely reflecting changes in cellular fatty acid oxidation, was associated with arterial stiffness among aged adults. This advances mechanistic understanding of arterial stiffness among aged adults before clinical disease.
Among community cohorts, associations between clinical and metabolite factors and complex left atrial (LA) phasic function assessed by cardiac magnetic resonance (CMR) feature tracking (FT) are unknown. Longitudinal LA strain comprising reservoir strain (εs), conduit strain (εe) and booster strain (εa) and their corresponding peak strain rates (SRs, SRe, SRa) were measured using CMR FT. Targeted mass spectrometry measured 83 circulating metabolites in serum. Sparse Principal Component Analysis was used for data reduction. Among community adults (n = 128, 41% female) (mean age: 70.5 ± 11.6 years), age was significantly associated with εs (β = −0.30, p < 0.0001), εe (β = −0.3, p < 0.0001), SRs (β = −0.02, p < 0.0001), SRe (β = 0.04, p < 0.0001) and SRe/SRa (β = −0.01, p = 0.012). In contrast, heart rate was significantly associated with εa (β = 0.1, p = 0.001) and SRa (β = −0.02, p < 0.0001). Serine was significantly associated with εs (β = 10.1, p = 0.015), SRs (β = 0.5, p = 0.033) and SRa (β = −0.9, p = 0.016). Citrulline was associated with εs (β = −4.0, p = 0.016), εa (β = −3.4, p = 0.002) and SRa (β = 0.4, p = 0.019). Valine was associated with ratio of SRe:SRa (β = −0.4, p = 0.039). Medium and long chain dicarboxyl carnitines were associated with εs (β = −0.6, p = 0.038). Phases of LA function were differentially associated with clinical and metabolite factors. Metabolite signals may be used to advance mechanistic understanding of LA disease in future studies.
Disruption of redox homeostasis in mycobacteria causes irreversible stress induction and cell death. Here, we report the dioxonaphthoimidazolium scaffold as a novel redox cycling antituberculosis chemotype with potent bactericidal activity against growing and nutrient-starved phenotypically drug-resistant nongrowing bacteria. Maximal potency was dependent on the activation of the redox cycling quinone by the positively charged scaffold and accessibility to the mycobacterial cell membrane as directed by the lipophilicity and conformational characteristics of the Nsubstituted side chains. Evidence from microbiological, biochemical, and genetic investigations implicates a redox-driven mode of action that is reliant on the reduction of the quinone by type II NADH dehydrogenase (NDH2) for the generation of bactericidal levels of the reactive oxygen species (ROS). The bactericidal profile of a potent water-soluble analogue 32 revealed good activity against nutrient-starved organisms in the Loebel model of dormancy, low spontaneous resistance mutation frequency, and synergy with isoniazid in the checkerboard assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.