▪ Abstract The use of stable isotope techniques in plant ecological research has grown steadily during the past two decades. This trend will continue as investigators realize that stable isotopes can serve as valuable nonradioactive tracers and nondestructive integrators of how plants today and in the past have interacted with and responded to their abiotic and biotic environments. At the center of nearly all plant ecological research which has made use of stable isotope methods are the notions of interactions and the resources that mediate or influence them. Our review, therefore, highlights recent advances in plant ecology that have embraced these notions, particularly at different spatial and temporal scales. Specifically, we review how isotope measurements associated with the critical plant resources carbon, water, and nitrogen have helped deepen our understanding of plant-resource acquisition, plant interactions with other organisms, and the role of plants in ecosystem studies. Where possible we also introduce how stable isotope information has provided insights into plant ecological research being done in a paleontological context. Progress in our understanding of plants in natural environments has shown that the future of plant ecological research will continue to see some of its greatest advances when stable isotope methods are applied.
Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ecosystem exchange (F NEE ) responses are being made among biome types, phenology patterns, and stress conditions. The comparisons are usually performed on annual sums of F NEE ; however, the average data coverage during a year is only 65%. Therefore, robust and consistent gap filling methods are required.We review several methods of gap filling and apply them to data sets available from the EUROFLUX and AmeriFlux databases. The methods are based on mean diurnal variation (MDV), look-up tables (LookUp), and nonlinear regressions (Regr.), and the impact of different gap filling methods on the annual sum of F NEE is investigated. The difference between annual F NEE filled by MDV compared to F NEE filled by Regr. ranged from −45 to +200 g C m −2 per year (MDV−Regr.). Comparing LookUp and Regr. methods resulted in a difference (LookUp−Regr.) ranging from −30 to +150 g C m −2 per year.We also investigated the impact of replacing measurements at night, when turbulent mixing is insufficient. The nighttime correction for low friction velocities (u * ) shifted annual F NEE on average by +77 g C m −2 per year, but in certain cases as much as +185 g C m −2 per year.Our results emphasize the need to standardize gap filling-methods for improving the comparability of flux data products from regional and global flux networks.
The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space‐based perspective, necessary to advance them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.