The spike glycoprotein of mouse hepatitis virus strain A59 mediates the early events leading to infection of cells, including fusion of the viral and cellular membranes. The spike is a type I membrane glycoprotein that possesses a conserved transmembrane anchor and an unusual cysteine-rich (cys) domain that bridges the putative junction of the anchor and the cytoplasmic tail. In this study, we examined the role of these carboxyl-terminal domains in spike-mediated membrane fusion. We show that the cytoplasmic tail is not required for fusion but has the capacity to enhance membrane fusion activity. Chimeric spike protein mutants containing substitutions of the entire transmembrane anchor and cys domain with the herpes simplex virus type 1 glycoprotein D (gD-1) anchor demonstrated that fusion activity requires the presence of the A59 membrane-spanning domain and the portion of the cys domain that lies upstream of the cytoplasmic tail. The cys domain is a required element since its deletion from the wild-type spike protein abrogates fusion activity. However, addition of the cys domain to fusion-defective chimeric proteins was unable to restore fusion activity. Thus, the cys domain is necessary but is not sufficient to complement the gD-1 anchor and allow for membrane fusion. Site-specific mutations of conserved cysteine residues in the cys domain markedly reduce membrane fusion, which further supports the conclusion that this region is crucial for spike function. The results indicate that the carboxyl-terminus of the spike transmembrane anchor contains at least two distinct domains, both of which are necessary for full membrane fusion.
In most retroviruses, the first nucleotide added to the tRNA primer becomes the right end of the U5 region in the right long terminal repeat (LTR); the removal of this tRNA primer by RNase H defines the right end of the linear double-stranded DNA. Most retroviruses have two nucleotides between the 5 end of the primer binding site (PBS) and the CA dinucleotide that will become the end of the integrated provirus. However, human immunodeficiency virus type 1 (HIV-1) has only one nucleotide at this position, and HIV-2 has three nucleotides. We changed the two nucleotides (TT) between the PBS and the CA dinucleotide of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z to match the HIV-1 sequence (G) and the HIV-2 sequence (GGT), and we changed the CA dinucleotide to TC. In all three mutants, RNase H removes the entire tRNA primer. Sequence analysis of RSVP(HIV2) proviruses suggests that RSV integrase can remove three nucleotides from the U5 LTR terminus of the linear viral DNA during integration, although this mutation significantly reduced virus titer, suggesting that removing three nucleotides is inefficient. However, the results obtained with RSVP(HIV1) and RSVP(CATC) show that RSV integrase can process and integrate the normal U3 LTR terminus of a linear DNA independently of an aberrant U5 LTR terminus. The aberrant end can then be joined to the host DNA by unusual processes that do not involve the conserved CA dinucleotide. These unusual events generate either large duplications or, less frequently, deletions in the host genomic DNA instead of the normal 5-to 6-base duplications.
When the endogenous polypurine tract (PPT) of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z was replaced with alternate retroviral PPTs, the fraction of unintegrated viral DNA with the normal consensus ends significantly decreased and the retention of part of the PPT significantly increased. If the terminus of the U3 long terminal repeat (LTR) is aberrant, RSV integrase can correctly process and integrate the normal U5 LTR into the host genome. However, the canonical CA is not involved in joining the aberrant U3 LTR to the host DNA, generating either large duplications or deletions of the host sequences instead of the normal 5-or 6-bp duplication.
The sequences required for integration of retroviral DNA have been analyzed in vitro. However, the in vitro experiments do not agree on which sequences are required for integration: for example, whether or not the conserved CA dinucleotide in the 3 end of the viral DNA is required for normal integration. At least a portion of the problem is due to differences in the experimental conditions used in the in vitro assays. To avoid the issue of what experimental conditions to use, we took an in vivo approach. We made mutations in the 5 end of the U3 sequence of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z. We present evidence that, in RSV, the CA dinucleotide in the 5 end of U3 is not essential for appropriate integration. This result differs from the results seen with mutations in the U5 end, where the CA appears to be essential for proper integration in vivo. In addition, based on the structure of circular viral DNAs smaller than the full-length viral genome, our results suggest that there is little, if any, integrase-mediated autointegration of RSV linear DNA in vivo.The retroviral life cycle is characterized by the conversion of the single-stranded RNA genome found in virions into a double-stranded linear DNA that is subsequently integrated into the host cell genome. Viral DNA synthesis takes place in the cytoplasm of the infected cell. The RNA genome of the virus is copied into DNA by a virally encoded enzyme, reverse transcriptase (RT). RT contains two enzymatic activities, a DNA polymerase that can copy either an RNA or a DNA template, and an RNase H that cleaves RNA only if the RNA is part of an RNA/DNA hybrid. Like many other DNA polymerases, RT requires both a template and a primer. First (minus)-strand DNA synthesis is initiated from a cellular tRNA primer that is base paired at the primer binding site (PBS), which is near the 5Ј end of the viral genomic RNA. During the reverse transcription process, this tRNA primer is removed from the end of the minus-strand DNA by RNase H; this defines the right (U5) end of the linear viral DNA. Second (plus)-strand DNA synthesis is initiated from a polypurine tract (PPT) primer adjacent to U3. The RNase H cleavages that generate and remove PPT primer define the left (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.