Recyclable titanium dioxide (TiO2)-based photocatalytic self-cleaning films (SCFs) having a bilayer structure were prepared and assessed. These SCFs comprised two layers of fibers fabricated using an electrospinning process. The self-cleaning layer was made of acrylonitrile–butadiene–styrene (ABS) fibers with embedded TiO2 while the substrate layer was composed of fibers made by simultaneously electrospinning poly (vinyl alcohol) (PVA) and ABS. This substrate improved the mechanical strength of the SCF and provided greater adhesion due to the presence of the PVA. The experimental results showed that the hydrophobicity (as assessed by the water contact angle), photocatalytic properties and self-cleaning efficiency of the SCF were all enhanced with increasing TiO2 content in the ABS/TiO2 fibers. In addition, the introduction of the substrate layer allowed the SCFs to be applied to various surfaces and then peeled off when desired. The ABS fibers effectively improved the strength of the overall film, while deterioration of the ABS upon exposure to UV light was alleviated by the addition of TiO2. These SCFs can potentially be recycled after use in various environments, and therefore have applications in the fields of environmental protection and medical science.
The collection capacity of common nasopharyngeal swabs and irregularities of medical personnel limit the accuracy of PCR testing. This study describes a newly designed 3D-printed swab that is combined with a 3D-printed cover to prevent the extraction of undesired nasal secretions. This swab improved the accuracy of PCR test results. The results of a series of experiments showed that, because of the mucus extraction effect, 3D-printed swabs can replace ordinary cotton swabs. The crisis of the worldwide medical supply shortage can be ameliorated to a certain extent by applying 3D printing technology.
Constructing precise metal patterns on complex three-dimensional
(3D) plastic parts allows the fabrication of functional devices for
advanced applications. However, it is currently expensive and requires
complex processes. This study demonstrates a process for the fabrication
of 3D metal–plastic composite structures with arbitrarily complex
shapes. A light-cured resin is modified to prepare the active precursor
allowing subsequent electroless plating (ELP). A multimaterial digital
light processing 3D printer was newly developed to fabricate the parts
containing regions made of either standard resin or active precursor
nested within each other. Selective 3D ELP processing of such parts
provided various metal–plastic composite parts having complicated
hollow structures with specific topological relationships with the
resolution of 40 μm. Using this technique, 3D devices that cannot
be manufactured by traditional methods are possible, and metal patterns
can be produced inside plastic parts as a means of further miniaturizing
electronics. The proposed method can also generate metal coatings
exhibiting improved adhesion of metal to substrate. Finally, several
sensors composed of different functional materials and specific metal
patterns were designed and fabricated. The present results demonstrate
the viability of the proposed method and suggest potential applications
in the fields of 3D electronics, wearable devices, and sensors.
In this study, we propose a novel robust online self-adaptive Proportional-Integral-Derivative (PID) control design for Brushless DC Motor (BLDCM) speed system under different operating conditions. The online adaptive tuning for PID parameters is realized accurately by optimizing the control rules of variable universe fuzzy inference with a modified genetic algorithm (GA). Based on the variable fuzzy inference theory, the method of solving contraction–expansion factor in real-time through fuzzy inference is proposed. Furthermore, the process to optimize two inference rules by GA is improved to get optimal control rules for adjusting PID parameters. Finally, multiple sets of simulations and experiments are conducted to validate the proposed controller in different conditions by building Simulink models and setting up experiment platforms. The results of this study not only demonstrate the effectiveness of the proposed controller but also provide technical suggestions for the speed control of BLDCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.