Background The stomata of plants mainly regulate gas exchange and water dispersion between the interior and external environments of plants and play a major role in the plants’ health. The existing methods of stomata segmentation and measurement are mostly for specialized plants. The purpose of this research is to develop a generic method for the fully automated segmentation and measurement of the living stomata of different plants. The proposed method utilizes level set theory and image processing technology and can outperform the existing stomata segmentation and measurement methods based on threshold and skeleton in terms of its versatility. Results The single stomata images of different plants were the input of the method and a level set based on the Chan-Vese model was used for stomatal segmentation. This allowed the morphological features of the stomata to be measured. Contrary to existing methods, the proposed segmentation method does not need any prior information about the stomata and is independent of the plant types. The segmentation results of 692 living stomata of black poplars show that the average measurement accuracies of the major and minor axes, area, eccentricity and opening degree are 95.68%, 95.53%, 93.04%, 99.46% and 94.32%, respectively. A segmentation test on dayflower ( Commelina benghalensis ) stomata data available in the literature was completed. The results show that the proposed method can effectively segment the stomata images (181 stomata) of dayflowers using bright-field microscopy. The fitted slope of the manually and automatically measured aperture is 0.993, and the R 2 value is 0.9828, which slightly outperforms the segmentation results that are given in the literature. Conclusions The proposed automated segmentation and measurement method for living stomata is superior to the existing methods based on the threshold and skeletonization in terms of versatility. The method does not need any prior information about the stomata. It is an unconstrained segmentation method, which can accurately segment and measure the stomata for different types of plants (woody or herbs). The method can automatically discriminate whether the pore region is independent or not and perform pore region extraction. In addition, the segmentation accuracy of the method is positively correlated with the stomata’s opening degree.
Research Highlights: This paper proposes a new method for hemispherical forest canopy image segmentation. The method is based on a deep learning methodology and provides a robust and fully automatic technique for the segmentation of forest canopy hemispherical photography (CHP) and gap fraction (GF) calculation. Background and Objectives: CHP is widely used to estimate structural forest variables. The GF is the most important parameter for calculating the leaf area index (LAI), and its calculation requires the binary segmentation result of the CHP. Materials and Methods: Our method consists of three modules, namely, northing correction, valid region extraction, and hemispherical image segmentation. In these steps, a core procedure is hemispherical canopy image segmentation based on the U-Net convolutional neural network. Our method is compared with traditional threshold methods (e.g., the Otsu and Ridler methods), a fuzzy clustering method (FCM), commercial professional software (WinSCANOPY), and the Habitat-Net network method. Results: The experimental results show that the method presented here achieves a Dice similarity coefficient (DSC) of 89.20% and an accuracy of 98.73%. Conclusions: The method presented here outperforms the Habitat-Net and WinSCANOPY methods, along with the FCM, and it is significantly better than the Otsu and Ridler threshold methods. The method takes the original canopy hemisphere image first and then automatically executes the three modules in sequence, and finally outputs the binary segmentation map. The method presented here is a pipelined, end-to-end method.
In typical single-cell RNA-seq (scRNA-seq) data analysis, a clustering algorithm is applied to find putative cell types as clusters, and then a statistical differential expression (DE) test is used to identify the differentially expressed (DE) genes between the cell clusters. However, this common procedure uses the same data twice, an issue known as "double dipping": the same data is used to define both cell clusters and DE genes, leading to false-positive DE genes even when the cell clusters are spurious. To overcome this challenge, we propose ClusterDE, a post-clustering DE test for controlling the false discovery rate (FDR) of identified DE genes regardless of clustering quality. The core idea of ClusterDE is to generate real-data-based synthetic null data with only one cluster, as a counterfactual in contrast to the real data, for evaluating the whole procedure of clustering followed by a DE test. Using comprehensive simulation and real data analysis, we show that ClusterDE has not only solid FDR control but also the ability to find cell-type marker genes that are biologically meaningful. ClusterDE is fast, transparent, and adaptive to a wide range of clustering algorithms and DE tests. Besides scRNA-seq data, ClusterDE is generally applicable to post-clustering DE analysis, including single-cell multi-omics data analysis.
Recently, a number of Non-Destructive Testings (NDTs) equipment which can partially replace human-conducted on-site inspections has been implemented for detecting modern civil architectural structures. However, the situation of implementing 3D laser scanning measurement technology worldwide is not optimistic: several inconvenient flaws are troubling users (e.g., heavy, costly, hard to move, hard to inspect and etc.). Therefore, a new equipment to address the problems is urgently demanded. A 3D laser scanning system is designed composed of high precision elevating platform and small 2D laser ranging sensor. Manufacture Process of the 3D laser scanning system is described in detail. A comparative analysis with other non-contact measurement experiments based on the bending fatigue load test, the scanning designed efficiency and feasibility has been proved. The information of micro-damage and depth of the structure can be quickly captured by the designed 3D laser scanning system. Its detecting performance is better than the traditional methods. To overcome the challenges of the 3D laser scanning on-site measurement technology, this paper proposes the manufacture process of the 3D scanning system with a high precision, miniaturization and lightweight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.