Tendon injury is a disorder of the musculoskeletal system caused by overuse or trauma, which is characterized by pain and limitations in joint function. Since tendon healing is slowly and various treatments are generally ineffective, it remains a clinically challenging problem. Recent evidences suggest that basic fibroblast growth factor (bFGF) not only plays an important role in tendon healing, but also shows a positive effect in laboratory experimentations. The purpose of this review is to summarize the effects of bFGF in the tendon healing. Firstly, during the inflammatory phase, bFGF stimulates the proliferation and differentiation of vascular endothelial cells to foster neovascularization. Furthermore, bFGF enhances the production of pro-inflammatory factors during the early phase of tendon healing, thereby accelerating the inflammatory response. Secondly, the cell proliferation phase is accompanied by the synthesis of a large number of extracellular matrix components. bFGF speeds up tendon healing by stimulating fibroblasts to secrete type III collagen. Lastly, the remodeling phase is characterized by the transition from type III collagen to type I collagen, which can be promoted by bFGF. However, excessive injection of bFGF can cause tendon adhesions as well as scar tissue formation. In future studies, we need to explore further applications of bFGF in the tendon healing process.
Tendon injuries are widespread and chronic disorders of the musculoskeletal system, frequently caused by overload of the tendons. Currently, the most common treatment for tendon injuries is "cell-free therapy", of which exosomes, which can treat a host of diseases, including immune disorders, musculoskeletal injuries and cardiovascular diseases, are one kind. Among the many sources of exosomes, adipose-derived stem cell exosomes (ASC-Exos) have better efficacy. This is attributed not only to the ease of isolation of adipose tissue, but also to the high differentiation capacity of ASCs, their greater paracrine function, and immunomodulatory capacity compared to other exosomes. ASC-Exos promote tendon repair by four mechanisms: promoting angiogenesis under hypoxic conditions, reducing the inflammatory response, promoting tendon cell migration and proliferation, and accelerating collagen synthesis, thus accelerating tendon healing. This review focuses on describing studies of preclinical experiments with various exosomes, the characteristics of ASC-Exos and their mechanisms of action in tendon healing, as well as elaborating the limitations of ASC-Exos in clinical applications.
Tendinopathy is a degenerative disease of the tendons caused by prolonged overstretching or overuse of the tendons. It accounts for a large proportion of musculoskeletal disorders which can occur in all age groups. The management of tendinopathy is typically conservative. In clinical practice, when other conservative treatments fail, extracorporeal shock wave therapy (ESWT) is normally used as an efficient alternative to surgical management. Several basic studies have shown that ESWT with lower energy flux densities can produce some biological responses in vivo to tendinopathy and may accelerate the initiation of the healing process in injured tendons. ESWT has a positive impact on the interactive chain of biological response, enhancing the signaling pathways of angiogenesis through mechanical conduction, and promoting cell proliferation and collagen formation. Finally, it helps tissue regeneration by controlling inflammation. The purpose of this review is to summarize the biological responses generated by ESWT in tendinopathy through a comprehensive review of the published literature. Although ESWT has been used clinically for the treatment of tendinopathies for nearly decades, less is known about the experimental studies of its biological effects on tendon tissue. Further studies on the biological response of ESWT for tendon injuries in vivo are needed in the future in order to provide better management to patients.
Tendon injuries are one of the most common musculoskeletal disorders for which patients seek medical aid, reducing not only the quality of life of the patient but also imposing a significant economic burden on society. The administration of growth factors at the wound site is a feasible solution for enhancing tendon healing. Platelet-derived growth factor-BB (PDGF-BB) has a well-defined safety profile compared to other growth factors and has been approved by the Food and Drug Administration (FDA). The purpose of this review is to summarize the role of PDGF-BB in tendon healing through a comprehensive review of the published literature. Experimental studies suggest that PDGF-BB has a positive effect on tendon healing by enhancing inflammatory responses, speeding up angiogenesis, stimulating tendon cell proliferation, increasing collagen synthesis and increasing the biomechanics of the repaired tendon. PDGF-BB is regarded as a promising candidate in tendon healing. However, in order to realize its full potential, we still need to carefully consider and study key issues such as dose and application time in the future, so as to explore further applications of PDGF-BB in the tendon healing process.
Tendon injury is one of the most common disorders of the musculoskeletal system, with a higher likelihood of occurrence in elderly individuals and athletes. In posthealing tendons, two undesirable consequences, tissue fibrosis and a reduction in mechanical properties, usually occur, resulting in an increased probability of rerupture or reinjury; thus, it is necessary to propose an appropriate treatment. Currently, most methods do not sufficiently modulate the tendon healing process and restore the function and structure of the injured tendon to those of a normal tendon, since there is still inadequate information about the effects of multiple cellular and other relevant signaling pathways on tendon healing and how the expression of their components is regulated. microRNAs are vital targets for promoting tendon repair and can modulate the expression of biological components in signaling pathways involved in various physiological and pathological responses. miRNAs are a type of noncoding ribonucleic acid essential for regulating processes such as cell proliferation, differentiation, migration and apoptosis; inflammatory responses; vascularization; fibrosis; and tissue repair. This article focuses on the biogenesis response of miRNAs while presenting their mechanisms in tendon healing with perspectives and suggestions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.