Electrooptic modes with fast response and high contrast ratio are highly desirable in modern photonics and displays. Ferroelectric liquid crystals (FLCs) are especially promising for fulfilling these demands by employing photoalignment technology in FLC cells. Three electrooptic modes including surface stabilized FLC (SSFLC), deformed helix ferroelectric (DHF) mode, and electrically suppressed helix (ESH) mode are reviewed with the corresponding electrooptic effects like bi- and multi-stable switching, continuous modulation of grayscale or phase, and high contrast switching. The general operation principles FLC electrooptic modes are described, and then the characteristics of each modes for potential applications are summarized. With the advantages of controllable anchoring energy, the photoalignment provides FLC samples with uniform alignment and high contrast ratio. The fast FLCs with a high resolution and high contrast can be used in the next generation display including field sequential color FLC microdisplays, as well as switchable 2D/3D televisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.