Objective Diagnostic errors in primary care are harmful but poorly studied. To facilitate understanding of diagnostic errors in real-world primary care settings using electronic health records (EHRs), this study explored the use of the Situational Awareness (SA) framework from aviation human factors research. Methods A mixed-methods study was conducted involving reviews of EHR data followed by semi-structured interviews of selected providers from two institutions in the US. The study population included 380 consecutive patients with colorectal and lung cancers diagnosed between February 2008 and January 2009. Using a pre-tested data collection instrument, trained physicians identified diagnostic errors, defined as lack of timely action on one or more established indications for diagnostic work-up for lung and colorectal cancers. Twenty-six providers involved in cases with and without errors were interviewed. Interviews probed for providers' lack of SA and how this may have influenced the diagnostic process. Results Of 254 cases meeting inclusion criteria, errors were found in 30 (32.6%) of 92 lung cancer cases and 56 (33.5%) of 167 colorectal cancer cases. Analysis of interviews related to error cases revealed evidence of lack of one of four levels of SA applicable to primary care practice: information perception, information comprehension, forecasting future events, and choosing appropriate action based on the first three levels. In cases without error, the application of the SA framework provided insight into processes involved in attention management. Conclusions A framework of SA can help analyze and understand diagnostic errors in primary care settings that use EHRs.
Two experiments examined whether prospective memory performance is influenced by contextual cues. In our automatic activation model, any information available at encoding and retrieval should aid recall of the prospective task. The first experiment demonstrated an effect of the ongoing task context; performance was better when information about the ongoing task present at retrieval was available at encoding. Performance was also improved by a strong association between the prospective memory target as it was presented at retrieval and the intention as it was encoded. Experiment 2 demonstrated boundary conditions of the ongoing task context effect, which implicate the association between the ongoing and prospective tasks formed at encoding as the source of the context effect. The results of this study are consistent with predictions based on automatic activation of intentions.
Despite improving patient safety in some perioperative settings, some checklists are not living up to their potential and complaints of "checklist fatigue" and outright rejection of checklists are growing. Problems reported often concern human factors: poor design, inadequate introduction and training, duplication with other safety checks, poor integration with existing workflow, and cultural barriers. Each medical setting-such as an operating room or a critical care unit-and different clinical needs-such as a shift handover or critical event response-require a different checklist design. One size will not fit all, and checklists must be built around the structure of medical teams and the flow of their work in those settings. Useful guidance can be found in the literature; however, to date, no integrated and comprehensive framework exists to guide development and design of checklists to be effective and harmonious with the flow of medical and perioperative tasks. We propose such a framework organized around the 5 stages of the checklist life cycle: (1) conception, (2) determination of content and design, (3) testing and validation, (4) induction, training, and implementation, and (5) ongoing evaluation, revision, and possible retirement. We also illustrate one way in which the design of checklists can better match user needs in specific perioperative settings (in this case, the operating room during critical events). Medical checklists will only live up to their potential to improve the quality of patient care if their development is improved and their designs are tailored to the specific needs of the users and the environments in which they are used.
A new paradigm was developed to examine prospective memory performance in a visual-spatial task that resembles some aspects of the work of air traffic controllers. Two experiments examined the role of workload (number of aeroplanes that participants directed), delay (between receipt of prospective instructions and execution), and phonological rehearsal. High workload increased prospective memory errors but increasing delay from 1-3 or 5 minutes had no effect. Shadowing aurally presented text reduced prospective memory performance, presumably because it prevented verbal rehearsal of the prospective instructions. However, performance on the foreground task of directing aeroplanes to routine destinations was affected only by workload and not by opportunity for rehearsal. Our results suggest that ability to maintain performance on a routine foreground task while performing a secondary task--perhaps analogous to conversation--does not predict ability to retrieve a prospective intention to deviate from the routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.