Nanocellulose, a biopolymer, has received wide attention from researchers owing to its superior physicochemical properties, such as high mechanical strength, low density, biodegradability, and biocompatibility. Nanocellulose can be extracted from wide range of sources, including plants, bacteria, and algae. Depending on the extraction process and dimensions (diameter and length), they are categorized into three main types: cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are a highly crystalline and needle-like structure, whereas CNFs have both amorphous and crystalline regions in their network. BNC is the purest form of nanocellulose. The nanocellulose properties can be tuned by chemical functionalization, which increases its applicability in biomedical applications. This review highlights the fabrication of different surface-modified nanocellulose to deliver active molecules, such as drugs, proteins, and plasmids. Nanocellulose-mediated delivery of active molecules is profoundly affected by its topographical structure and the interaction between the loaded molecules and nanocellulose. The applications of nanocellulose and its composites in tissue engineering have been discussed. Finally, the review is concluded with further opportunities and challenges in nanocellulose-mediated delivery of active molecules.
Biocompatible nanomaterials have attracted enormous interest for biomedical applications. Carbonaceous materials, including carbon nanotubes (CNTs), have been widely explored in wound healing and other applications because of their superior physicochemical and potential biomedical properties to the nanoscale level. CNTs-based hydrogels are widely used for wound-healing and antibacterial applications. CNTs-based materials exhibited improved antimicrobial, antibacterial, adhesive, antioxidants, and mechanical properties, which are beneficial for the wound-healing process. This review concisely discussed the preparation of CNTs-based hydrogels and their antibacterial and wound-healing applications. The conductive potential of CNTs and their derivatives is discussed. It has been observed that the conductivity of CNTs is profoundly affected by their structure, temperature, and functionalization. CNTs properties can be easily modified by surface functionalization. CNTs-based composite hydrogels demonstrated superior antibacterial potential to corresponding pure polymer hydrogels. The accelerated wound healing was observed with CNTs-based hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.