Type 2 diabetes mellitus (T2DM) has a high global prevalence, and the interaction of environmental factors and genetic factors may contribute to the risk of T2DM. We aimed to investigate the association between T2DM and the single nucleotide polymorphisms (SNPs) in genes (CDKAL1 and HHEX) associated with insulin secretion. Subjects and Methods: T2DM (n=1,169) and nondiabetic (NDM) (n=1,277) subjects were enrolled and the eight SNPs in CDKAL1 and HHEX genes associated with insulin secretion were genotyped in a Chinese population using MassARRAY. Then, the association of these SNPs with T2DM was analyzed. Results: Our results revealed that four SNPs (rs4712524, rs10946398, rs7754840 in CDKAL1, and rs5015480 in HHEX) showed significantly different distributions between the T2DM and NDM groups (P<0.00625). The G allele of rs4712524 (P=0.004, OR=1.184; 95% CI=1.057-1.327), C allele of rs10946398 (P<0.001, OR=1.247; 95% CI=1.112-1.398), and C allele of rs775480 in CDKAL1 (P<0.001, OR=1.229; 95% CI=1.096-1.387) functioned as risk alleles of T2DM. The C allele of rs5015480 in HHEX (P<0.001, OR=1.295; 95% CI=1.124-1.493) was also the risk factor for T2DM. The haplotype analysis revealed that CDKAL1 haplotype rs4712524G-rs10946398C-rs7754840C-rs9460546G (P=0.001, OR=1.210; 95% CI=1.076-1.360) and HHEX haplotype rs1111875C-rs5015480C (P<0.001, OR=1.364; 95% CI=1.180-1.576) were the risk factors of T2DM. Conclusion:Our results revealed that genetic variations in CDKAL1 and HHEX were associated with T2DM susceptibility in Chinese population.
Background: Type 2 diabetes mellitus (T2DM) is a complex chronic metabolic disorder triggered by insulin resistance in peripheral tissues. Evidence has shown that lipid metabolism and related genetic factors lead to insulin resistance. Hence, it is meaningful to investigate the association between single-nucleotide polymorphisms (SNPs) in lipid metabolism-related genes and T2DM. Methods: A total of 1,194 subjects with T2DM and 1,274 Non-diabetic subjects (NDM) were enrolled. Five SNPs in three genes (rs864745 in JAZF1 , rs35767 in IGF1 , and rs4376068, rs4402960, and rs6769511 in IGF2BP2 ) that contribute to insulin resistance involving lipid metabolism were genotyped using the MassArray method in a Chinese population. Results: The allele and genotypes of rs6769511 in IGF2BP2 were associated with T2DM (P=0.009 and P=0.002, respectively). In inheritance model analysis, compared with the T/T-C/T genotype, the C/C genotype of rs6769511 in IGF2BP2 was a risk factor for the development of T2DM (P<0.001, odds ratio [OR] =1.76; 95% confidence interval [CI]: 1.29-2.42). Haplotype analysis revealed associations of the rs4376068-rs4402960-rs6769511 haplotypes in IGF2BP2 with the development of T2DM (P=0.015). Additionally, rs4376068C-rs4402960T-rs6769511C was a risk haplotype for T2DM (OR=1.179; 95% CI: 1.033-1.346). Conclusion: The rs6769511 in IGF2BP2 was associated with T2DM susceptibility, and the rs4376068-rs4402960-rs6769511 haplotypes in IGF2BP2 was associated with the development of T2DM in a Chinese population.
Background The insulin/insulin receptor substrate (IRS)/phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt)/GLUT4 pathway plays a crucial role in insulin resistance and is closely associated with T2DM. Accumulating evidence indicates that miRNAs (such as miR‐135a, let‐7d, miR‐107, miR‐96, miR‐29a, miR‐23a, miR‐126, miR‐133a, and miR‐106b) influence the GLUT4 pathway. Methods A total of 784 subjects with T2DM and 846 nondiabetic subjects were enrolled and 12 single nucleotide polymorphisms (SNPs) in miRNAs (rs10459194 in miR‐135a‐2, rs10993081 and rs7045890 in let‐7d, rs2296616 in miR‐107, rs2402959 and rs6965643 in miR‐96, rs24168 in miR‐29a, rs3745453 in miR‐23a, rs4636297 in miR‐126, rs8089787 and rs9948906 in miR‐133a‐1 and rs999885 in miR‐106b) involved in the GLUT4 pathway were genotyped using the MassArray method in a Chinese population. Results Our data showed that the A allele of rs2402959 in miR‐96 may increase the risk of developing T2DM (p = .002, OR = 1.266; 95% CI: 1.089–1.471). The genotypes of rs3745453 in miR‐23a showed the difference between T2DM and control groups (p < .001). Moreover, for rs2402959, compared with the A/A genotype, the (G/A–G/G) genotype shows a protective effect in T2DM (p = .001, OR = 0.71; 95% CI: 0.58–0.87). For rs3745453, compared with the (A/A–A/G) genotype, the G/G genotype increases the risk of T2DM (p < .001, OR = 1.95; 95% CI: 1.38–2.77). In addition, we also found that rs4636297G/G genotype was associated with lower TC in T2DM group. Conclusion Our results revealed that genetic variations in the miRNAs involved in the GLUT4 pathway were associated with T2DM susceptibility in a Chinese population, and these results emphasize the need to study the functional effects of these variations in the miRNAs involved in the GLUT4 pathway on the risk of developing T2DM.
Aims-To determine, by strain identification of Mycobacterium tuberculosis, whether transmission has occurred between individuals or whether new strains are present. Methods-A rapid protocol for random amplified polymorphic DNA (RAPD) analysis was developed. This protocol was applied to 64 strains ofM tuberculosis that had been confirmed by culture and microbiological methods. Results-There are five groups of M tuberculosis prevalent in Taipei city, Taiwan. The major types are groups I and III. Groups I and II had been prevalent until the end oflast year when, according to our group analysis, they had been eradicated. However, group III was continuously present from the middle of 1995 to the middle of 1996, and group IV was present at the end of both years, which indicated that both groups were transmitted continuously. These clustered strains had demographic characteristics consistent with a finding of transmission tuberculosis. Also, there were 13 of 64 strains with unique RAPD fingerprints that were inferred to be due primarily to the reactivation of infection. In the drug resistance analysis, the major type represented included group III and part of group IV. Conclusions-Our preliminary data imply, not only that the prevalence of M tuberculosis in Taipei city is due to transmission rather than reactivation, but that drug resistance also may play a role in tuberculosis transmission. (7 Clin Pathol 1997;50:505-508)
Oligopeptide transporters (OPTs) are believed to transport broad ranges of substrates across the plasma membrane from the extracellular environment into the cell and are thought to contribute to various biological processes. In the present study, 13 putative OPTs (Gl-OPT1 to Gl-OPT13) were identified through extensive search of Ganoderma lucidum genome database. Phylogenetic analysis with OPTs from other fungi and plants indicates that these genes can be further divided into five groups. Motif compositions of OPT members are highly conserved in each group, indicative of functional conservation. Expression profile analysis of the 13 Gl-OPT genes indicated that, with the exception of Gl-OPT7-Gl-OPT9, for which no transcripts were detected, all paralogues were differentially expressed, suggesting their potential involvement in stress response and functional development of fungi. Overall, the analyses in this study provide a starting point for elucidating the functions of OPT in G. lucidum, and for understanding the complexities of metabolic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.