Lactobacillus plantarum (L. plantarum) exopolysaccharide (EPS) is an important bioactive component in fermented functional foods. However, there is a lack of data concerning the effects of L. plantarum EPS on maturation of mouse dendritic cells (DCs). In this study, we purified L. plantarum EPS and examined its effects on cytokines production by dendritic cells in serum and intestinal fluid of BALB/c mice, then investigated its effects on phenotypic and functional maturation of mouse bone marrow-derived dendritic cells (BMDCs). Cytokines (nitric oxide, IL-12p70, IL-10 and RANTES) in serum and intestinal fluid were analyzed by enzyme linked immunosorbent assay (ELISA) after the mice received EPS for 2, 5 and 7 days, respectively. DCs derived from bone marrow of BALB/c mouse were treated with EPS, then the phenotypic maturation of BMDCs was analyzed using flow cytometer and the functional maturation of BMDCs was analyzed by ELISA, and, lastly, mixed lymphocyte proliferation was performed. We found the molecular weight of purified EPS was approximately 2.4×106 Da and it was composed of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2:1:1:10:4:205:215. We observed that L. plantarum EPS enriched production of nitric oxide, IL-12p70 and RANTES, and decreased the secretion of IL-10 in the serum or intestinal fluid as well as in the supernatant of DCs treated with the EPS. The EPS also up-regulated the expression of MHC II and CD86 on DCs surface and promoted T cells to proliferate in vitro. Our data provide direct evidence to suggest that L. plantarum EPS can effectively induce maturation of DCs in mice.
The spatial coherencies of ground motions are the key to establishing multi-support excitation for large-dimension structures. Most of the existing models were established based on ground motions recorded at dense observation arrays which barely show any detailed information on the focal mechanism. However, in the near field, ground motions are dominated by the source, and so are the spatial coherencies of ground motions. In this paper, a deterministic physics-based method was used to simulate ground motions in the near field for various focal mechanism scenarios. The coherencies of the simulated ground motions were calculated. The Loh coherency model was used to fit the variation in the calculated coherencies for each scenario. The results show that the focal mechanism has a significant effect on the spatial coherencies of simulated ground motions. Finally, the probability density distributions of the parameters, a and b, of the Loh coherency model were obtained, and a coherency model was proposed, based on the Loh coherency model, in which the parameters are taken to be dependent on the focal mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.