Nonwoven fiber mats of chitosan with potential applications in air and water filtration were successfully made by electrospinning of chitosan and poly(ethyleneoxide) (PEO) blend solutions. Electrospinning of pure chitosan was hindered by its limited solubility in aqueous acids and high degree of inter- and intrachain hydrogen bonding. Nanometer-sized fibers with fiber diameter as low as 80 +/- 35 nm without bead defects were made by electrospinning high molecular weight chitosan/PEO (95:5) blends. Fiber formation was characterized by fiber shape and size and was found to be strongly governed by the polymer molecular weight, blend ratios, polymer concentration, choice of solvent, and degree of deacetylation of chitosan. Weight fractions of polymers in the electrospun nonwoven fibers mats were determined by thermal gravimetric analysis and were similar to ratio of polymers in the blend solution. Surface properties of fiber mats were determined by measuring the binding efficiency of toxic heavy metal ions like chromium, and they were found to be related with fiber composition and structure.
Abstract. Due to its thermoplastic and biodegradable nature, poly(lactic acid) (PLA) holds good promise in its increasing use in the form of fibers for medical, agricultural, apparel, upholstery, hygiene, and other applications. Most of the research being done on PLA fibers is to understand their production by melt spinning, solution spinning, and the structure-property relationships during fiber formation. Nonwovens are one of the important forms of the materials into which PLA polymer can be converted to create many useful products. Thermal bonding is the most widely used bonding technique employed to impart strength, and other useful characteristics to the nonwovens. However, there is limited research done to study the behavior of PLA fibers during thermal bonding of nonwovens. Hence the research was carried out to investigate the thermal bonding of nonwovens made from PLA staple fibers. The PLA fibers were carded and then calendered at different temperatures. The webs were characterized for their structure and properties. The observed results are discussed with respect to the investigated processing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.