In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni-Fe random alloys that is tuned/ controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical complexity can be utilized to guide the atomic diffusion and suppress radiation damage. The influence of chemical complexity is shown by the example of interstitial atom (IA) diffusion that is the most important defect in radiation effects. We use μs-scale molecular dynamics to reveal sluggish diffusion and percolation of IAs in concentrated Ni-Fe alloys. We develop a mean field diffusion model to take into account the effect of migrating defect energy properties on diffusion percolation, which is verified by a new kinetic Monte Carlo approach addressing detailed processes. We demonstrate that the local variations in the ground state energy of IA configurations in alloys, reflecting the chemical difference between alloying components, drives the percolation effects for atomic diffusion. Percolation, chemically-biased and sluggish diffusion are phenomena that are directly related to the chemical complexity intrinsically to multicomponent alloys.npj Computational Materials (2020) 6:38 ; https://doi.
Vacancy and self-interstitial atomic diffusion coefficients in concentrated solid solution alloys can have a non-monotonic concentration dependence. Here, the kinetics of monovacancies and ⟨100⟩ dumbbell interstitials in Ni–Fe alloys are assessed using lattice kinetic Monte Carlo (kMC). The non-monotonicity is associated with superbasins, which impels using accelerated kMC methods. Detailed implementation prescriptions for first passage time analysis kMC (FPTA-kMC), mean rate method kMC (MRM-kMC), and accelerated superbasin kMC (AS-kMC) are given. The accelerated methods are benchmarked in the context of diffusion coefficient calculations. The benchmarks indicate that MRM-kMC underestimates diffusion coefficients, while AS-kMC overestimates them. In this application, MRM-kMC and AS-kMC are computationally more efficient than the more accurate FPTA-kMC. Our calculations indicate that composition dependence of migration energies is at the origin of the vacancy’s non-monotonic behavior. In contrast, the difference between formation energies of Ni–Ni, Ni–Fe, and Fe–Fe dumbbell interstitials is at the origin of their non-monotonic diffusion behavior. Additionally, the migration barrier crossover composition—based on the situation where Ni or Fe atom jumps have lower energy barrier than the other one—is introduced. KMC simulations indicate that the interplay between composition dependent crossover of migration energy and geometrical site percolation explains the non-monotonic concentration-dependence of atomic diffusion coefficients.
Using conventional continuum-based simulation frameworks to model crack initiation and extension can be computationally challenging. As an alternative to continuum-based approaches, particle-based simulation methods are well-suited to handle the discontinuities present during fracture propagation. A well-known particle-based method is the lattice particle method (LPM), which discretizes the system into a set of interconnected particles ollowing a periodic arrangement. Discontinuities can be handled simply by removing bonds between particles. For this reason, LPM-based simulations have been employed to simulate fracture propagation in heterogeneous media, notably in civil engineering and biomaterials applications. However, a practical limitation of this method is the absence of implementation within a commonly-used software platform. This work describes such an implementation of a non-local LPM within the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Specifically, we implemented a new LAMMPS bond style with a many-body term to tune Poisson’s ratios. In order to validate the nonlocal formalism and our implementation of this method within LAMMPS, simulated elastic properties are compared to analytical solutions reported in the literature. Good agreement between simulated and analytical values is found for systems with positive Poisson’s ratios. The computational and parallel efficiency of the LPM-LAMMPS implementation is also benchmarked. Finally, we compare the elastic response of a 3D porous structure and an aircraft wing as calculated using the LPM and finite-element analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.