NiTi shape memory alloys (SMAs) are used in a broad range of biomedical applications because of their unique properties including biocompatibility and high corrosion and wear resistance as well as functional properties such as superelasticity and the shape memory effect. The combination of SMAs and additive manufacturing can lead to revolutionary changes to the uses of SMAs in the biomedical industry. This article discusses the potential biomedical applications of NiTi that benefit from the AM process. We share the lessons learned in processing NiTi alloys with a focus on the laser powder bed fusion (LPBF) technique. The manufacturability, build quality, stable phases and transformation temperatures, microstructure, thermomechanical properties, microstructure tailoring, and functional properties of NiTi alloys produced via AM processing are reviewed. Current challenges such as expanding the process window, controlling the chemistry, and the performance and property responses are discussed, and potential opportunities including alloy design are discussed.
The use of titanium bone fixation plates is considered the standard of care for skeletal reconstructive surgery. Highly stiff titanium bone fixation plates provide immobilization immediately after the surgery. However, after the bone healing stage, they may cause stress shielding and lead to bone resorption and failure of the surgery. Stiffness-modulated or stiffness-matched Nitinol bone fixation plates that are fabricated via additive manufacturing (AM) have been recently introduced by our group as a long-lasting solution for minimizing the stress shielding and the follow-on bone resorption. Up to this point, we have modeled the performance of Nitinol bone fixation plates in mandibular reconstruction surgery and investigated the possibility of fabricating these implants. In this study, for the first time the realistic design of stiffness-modulated Nitinol bone fixation plates is presented. Plates with different levels of stiffness were fabricated, mechanically tested, and used for verifying the design approach. Followed by the design verification, to achieve superelastic bone fixation plates we proposed the use of Ni-rich Nitinol powder for the AM process and updated the models based on that. Superelastic Nitinol bone fixation plates with the extreme level of porosity were fabricated, and a chemical polishing procedure used to remove the un-melted powder was developed using SEM analysis. Thermomechanical evaluation of the polished bone fixation plates verified the desired superelasticity based on finite element (FE) simulations, and the chemical analysis showed good agreement with the ASTM standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.