Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests.
Background: Due to its strong water binding potential, hyaluronic acid (HA) is a well-known active ingredient for cosmetic applications. However, based on its varying molecular size, skin penetration of HA may be limited. Recent studies have demonstrated that low-molecular-weight HA (LMW HA) may show a certain proinflammatory activity. We thus aimed to characterize an LMW-sized HA molecule that combines strong anti-aging abilities with efficient skin penetration but lacks potential proinflammatory effects. Methods: Total RNA and total protein were isolated from reconstituted human epidermis following incubation with HAs of various molecular weights (20, 50, 130, 300, 800 and 1,500 kDa). Tumor necrosis factor-α expression was determined using quantitative PCR. Genomic and proteomic expression of various junctional proteins was determined using Affymetrix and common Western blotting techniques. Results: LMWHA of approximately 50 kDa did not significantly alter tumor necrosis factor-α expression compared to 20-kDa HA, but revealed significantly higher skin penetration rates than larger sized HA associated with increased expression of genes and proteins known to be involved in tight junction formation and keratinocyte cohesion. Conclusion: LMW HA of approximately 50 kDa shows better penetration abilities than larger-sized HA. In addition, LMW HA influences the expression of various genes including those contributing to keratinocyte differentiation and formation of intercellular tight junction complexes without showing proinflammatory activity. These observations contribute to current knowledge on the effects of LMW HA on keratinocyte biology and cutaneous physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.