This paper provides an overview of the current solid waste management (SWM) practices in Benghazi, Libya and suggests solutions to some of the major problems regarding the matter. There have been several crucial issues faced by the city of Benghazi (the second capital city in Libya) on SWM, including limited documentation on the generation, handling, management, and disposal of waste. The existing solid waste-management system is affected by unfavourable economic, institutional, legislative, technical, and operational constraints. The collection process is deficient in terms of manpower and vehicle availability. There is no treatment provided to the wastes dumped into an open land at Ganfoudah site after collection. Lack of suitable facilities and inadequate management and technical skills, improper bin collection, and route planning are among the issues resulting in poor collection and transportation of municipal solid wastes. The MSW management should be improved in terms of effectiveness of the MSW collection, transportation, and treatment. More effective efforts are also needed by involving the public in policymaking, development of service plans, implementation of future waste-management programs, and decision-making regarding landfill siting.
Objective To evaluate the quantitative accuracy of clinical brain dopamine transporters (DAT) investigations utilizing 99mTc‐TRODAT‐1 single‐photon emission computed tomography (SPECT)/computed tomography (CT) in experimental and clinical settings. Materials and methods The study used an experimental phantom evaluation and a clinical dataset. Three‐dimensional‐ordered subsets expectation–maximization reconstructed the original and resampled datasets using attenuation correction, scatter correction, and resolution recovery. The reconstructed data were analyzed and reported as percentage difference, standardized uptake value reference (SUVr), and a coefficient of variation (CoV). The Taguchi method tested the impact of the three different parameters on signal‐to‐noise ratio (SNR) and SUVr, including number iteration, Poisson resampling, and phantom setup, with and without the plaster of Paris (POP). Six 99mTc‐TRODAT‐1 SPECT/CT scans were acquired in healthy subjects for verification purposes. Results The percentage activity difference between the phantom with and without POP is 20% and 5%, respectively. The SUVr reveals a 10% underestimate for both with and without POP. When it comes to the influence of Poisson resampling, the SUVr value for 75% Poisson resampling indicates 10% underestimation on both sides of the caudate and putamen area, with and without POP. When 25% of Poisson resampling is applied, the SUVr value is overestimated (±35%). In the Taguchi analysis, iteration numbers were the most dominant factor with the F‐value of 9.41 and the contribution rate of 52.66% (p < 0.05) for SNR. In comparison, F‐value of 9.1 for Poisson resampled with contribution rate of 58.91% (p < 0.05) for SUVr. Reducing counts by 25% from the original dataset resulted in a minimal bias in SUVr, compared to 50% and 75%. Conclusion The optimal absolute SPECT/CT quantification of brain DAT studies using 99mTc‐TRODAT‐1 appears achievable with at least 4i10s and SUVr as the surrogate parameter. In clinical investigations, it is possible to reduce the recommended administered dose by up to 25% while maintaining accurate measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.