In this work, 18.5 microm titanium oxide (TiO(2)) nanotube arrays were formed by the anodization of titanium (Ti) foil in ethylene glycol containing 1 wt% water and 5 wt% fluoride for 60 min at 60 V. The fast growth rate of the nanotube arrays at 308 nm min(-1) was achieved due to the excess fluoride content and the limited amount of water in ethylene glycol used for anodization. Limited water content and excess fluoride in ethylene glycol inhibited the formation of a thick barrier layer by increasing the dissolution rate at the bottom of the nanotubes. This eased the transport of titanium, fluorine and oxygen ions, and allowed the nanotubes to grow deep into the titanium foil. At the same time, the neutral condition offered a protective environment along the tube wall and pore mouth, which minimized lateral and top dissolution. Results from x-ray photoelectron spectra revealed that the TiO(2) nanotubes prepared in ethylene glycol contained Ti, oxygen (O) and carbon (C) after annealing. The photocatalytic activity of the nanotube arrays produced was evaluated by monitoring the degradation of methyl orange. Results indicate that a nanotube with an average diameter of 140 nm and an optimal tube length of 18.5 microm with a thin tube wall (20 nm) is the optimum structure required to achieve high photocatalytic reaction. In addition, the existence of carbon, high degree of anatase crystallinity, smooth wall and absence of fluorine enhanced the photocatalytic activity of the sample.
Metal oxide-polymer nanocomposite has been proven to have selective bactericidal effects against the main and common pathogens (Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli)) that can cause harmful infectious diseases. As such, this study looked into the prospect of using TiO2/ZnO with linear low-density polyethylene (LLDPE) to inactivate S. aureus and E. coli. The physical, structural, chemical, mechanical, and antibacterial properties of the nanocomposite were investigated in detail in this paper. The production of reactive species, such as hydroxyl radicals (•OH), holes (h+), superoxide anion radicals (O2•¯), and zinc ion (Zn2+), released from the nanocomposite were quantified to elucidate the underlying antibacterial mechanisms. LLDPE/25T75Z with TiO2/ZnO (1:3) nanocomposite displayed the best performance that inactivated S. aureus and E. coli by 95% and 100%, respectively. The dominant reactive active species and the zinc ion release toward the superior antibacterial effect of nanocomposite are discussed. This work does not only offer depiction of the effective element required for antimicrobial biomedical appliances, but also the essential structural characteristics to enhance water uptake to expedite photocatalytic activity of LLDPE/metal oxide nanocomposite for long term application.
The surge of medical devices associated with nosocomial infection (NI) cases, especially by multidrug-resistant (MDR) bacterial strains, is one of the pressing issues of present health care systems. Metal oxide nanoparticles (MNPs) have become promising antibacterial agents against a wide range of bacterial strains. This work study is on the bactericidal capacity of heterogeneous TiO 2 /ZnO nanocomposites with different weight percentages and concentrations against common MDR and non-MDR bacterial strains. The profiles on disk diffusion, minimum inhibitory concentration, minimum bactericidal concentration, tolerance determination, time-kill, and biofilm inhibition assay were determined after 24 h of direct contact with the nanocomposite samples. Findings from this work revealed that the heterogeneous TiO 2 /ZnO nanocomposite with a 25T75Z weight ratio showed an optimal tolerance ratio against Grampositive and -negative bacteria, indicating their bactericidal capacity. Further observation suggests that higher molar ratio of Zn 2+ may possibly involve generation of active ion species that enhance bactericidal effect against Gram-positive bacterial strains, especially for the MDR strains. Nano-based technology using MNPs may provide a promising solution for the prevention and control of NIs. Further work on biocompatibility and cytotoxicity profiles of this nanocomposite are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.