Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman’s assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer’s disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
Nipa palm vinegar has been traditionally used to manage blood glucose levels by diabetic patients in Southeast Asia. This study was designed to evaluate the efficacy of nipa palm vinegar in inhibiting the activity of carbohydrate hydrolyzing enzymes, α-glucosidase, and α-amylase. In vitro spectrophotometric assays were used to evaluate the inhibitory activity of nipa palm activity against α-glucosidase and α-amylase. To confirm the in vitro findings, an oral starch tolerance test in the normoglycemic Sprague Dawley rat was conducted. Acarbose was used as the positive control for both tests. Nipa palm vinegar at a concentration ranging from 4000 to 62.5 mg/mL inhibited the activity of α-glucosidase and α-amylase in a concentration-dependent manner with the respective IC50 values of 144.50 ± 1.1 mg/mL and 90.30 ± 1.7 mg/mL. It also exerted uncompetitive inhibition against α-glucosidase and competitive inhibition towards α-amylase. In vivo oral starch tolerance test showed a significant (p < 0.05) postprandial glucose-lowering effect of nipa palm vinegar at the doses of 2 mL/kg and 1 mL/kg body weight as compared to the control. In a conclusion, this study demonstrated that nipa palm vinegar suppressed the rise in postprandial glucose levels partly by inhibiting the activity of digestive enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.