Among food crops in terms of consumption, potato ranks fourth, most important and valuable crop worldwide in terms of production and area harvested after maize, wheat and rice. In the coming years, potato production must keep pace with global population expansion nutritiously and sustainably which can partially be achieved by reducing the yield losses caused by the destructive pest and disease activities to the crop. The challenge of 70–80% total microbial crop yield loss posed by pathogens must be addressed for sustainable potato production in order to properly alleviate the global starvation problem. Potato as a food security crop can help to achieve the four food security requirements: food availability, quality, accessibility and stability. Health benefits of potato have shown the presence of phytochemicals as well as resistant starch which serve as anticancer and antidiabetic. The role of potato in the global food security should not be over emphasized, hence in this chapter we want to give an overview on the global hunger and food security at present, and the role played by potato as a food security crop. In addition, potato yield losses caused by pests and diseases especially phytopathogens, their etiology and the role of crop protection in sustainable potato production to alleviate global starvation problem will be discussed.
The potential of Garcinia mangostana as a biological control agent against plant pathogenic bacteria which decrease the quality and volume of crop production worldwide was assessed. Mangosteen leaves were extracted by maceration using chloroform, n-hexane, and methanol. For the in vitro antibacterial activity, two dissimilar species of plant pathogenic bacteria: Pseudomonas syringe pv. tomato and Xanthomonas oryzae pv. oryzae were acquired. Four different concentrations, 12.5, 25, 50, and 100 mg/ml were obtained through the cup-plate agar diffusion technique. Streptomycin sulphate at 30 μg/ml concentration was set as the positive control, whereas every respective solvent used in the leaf extraction was set as the negative control. The results have shown that, only methanol extract demonstrated antibacterial activity when tested on the plant pathogenic bacteria. The highest diameter of inhibition zones was observed in X. oryzae pv. oryzae, at all range of concentrations, followed by P. syringae pv. tomato. The least methanol extract concentration utilised in determination of minimum inhibitory concentration (MIC) assay was at 1.562 mg/ml, inhibiting X. oryzae pv. oryzae, followed by P. syringe pv. tomato at a concentration 3.125 mg/ml. Antibacterial impacts of the most effectual extract of mangosteen crude were supported by the existence of chemical components identified by GC-MS. Cycloartenol, Caryophyllene, Docosane, Phenol, 4,4-Methylenebis (2,6-di-tert-butylphenol) and Chromium were noted as key compounds in the mangosteen leaf extract, which were perhaps causing the antibacterial activity.
Plant pathogenic bacteria are recognized to be harmful microbes able to decrease the quantity and quality of crop production in the world. Punica granatum peel was screened for its potential use as biological control agent for plant pathogenic bacteria. P. granatum peel was successfully extract using n-hexane, methanol and ethyl acetate by maceration. The highest yield obtained by ethyl acetate showed that ethyl acetate extracted more compounds that readily soluble to methanol and n-hexane. For in-vitro antibacterial activity, three different species of plant pathogenic bacteria were used namely Erwinia carotovorum subsp. Carotovorum, Ralstonia solanacearum, and Xanthomonas gardneri. For all crude extracts, four different concentrations 25, 50, 100 and 200 mg/ml were used in cup-plate agar diffusion method. Streptomycin sulfate at concentration 30 µg/ml was used as positive control while each respective solvent used for peel extraction was used as negative control. The results obtained from in vitro studies showed only ethyl acetate extract possessed antibacterial activity tested on the plant pathogenic bacteria. Methanol and n-hexane did not show any antibacterial activity against plant pathogenic bacteria selected where no inhibition zones were recorded. R. solanacearum recorded the highest diameter of inhibition zones for all range of concentrations introduced followed by E. carotovorum subsp. Carotovorum and X. gardneri. For the minimum inhbitory concentration (MIC) and minimum bactericidal concentration (MBC), only the ethyl acetate extract was subjected to the assay as only ethyl acetate extract exhibited antibacterial activity. The minimum concentration of ethyl acetate extract that was able to inhibit plant pathogenic bacteria was recorded at a concentration of 3.12 mg/ml which inhibited R. solancearum and E. carotovorum subsp. Carotovorum, followed by X. gardneri at concentration 6.25 mg/ml. For the minimum bactericidal concentration (MBC), the results showed that at A. I. Khaleel et al. 160the concentration of 12.5 mg/ml, the extract was still capable of killing the pathogenic bacteria, R. solanacearum, and P. caratovora sub.sp. caratovora while for the bacteria X. gardneri, the concentration that was able to kill the bacteria was 25 mg/ml. The qualitative estimation of phytochemical constituents within P. granatum L. ethyl acetate peel extracts had revealed the presence of tannins, flavonoids, phenols alkaloid, Saponins, and terpenoids. This study has demonstrated that Ethyl Acetate peel extracts of P. granatum has significant antibacterial activity against pathogenic plant bacterial, and it could be of high agricultural value.
Phytophthora palmivora is a destructive plant pathogenic oomycete that has caused lethal diseases in a wide range of hosts. It is a pan-tropical distributed pathogen that can infect plants at all growth stages. Extensive studies have linked P. palmivora to severe diseases in several crops, such as black pepper, rubber, cocoa, and durian, causing global economic losses. This review covers the following topics in depth: (i) P. palmivora as phytopathogen; (ii) identification and infection mechanism in rubber, cocoa, and durian; and (iii) management and control applied for P. palmivora diseases. Effective management strategies were studied and practiced to prevent the spread of P. palmivora disease. Genetic resistance and biocontrol are the best methods to control the disease. A better understanding of P. palmivora infection mechanisms in our main crops and early disease detection can reduce the risk of catastrophic pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.