Autonomous navigation (AN) and manoeuvring are increasingly important in distributed satellite systems (DSS) in order to avoid potential collisions with space debris and other resident space objects (RSO). In order to accomplish collision avoidance manoeuvres, tracking and characterization of RSO is crucial. At present, RSO are tracked and catalogued using ground-based observations, but space-based space surveillance (SBSS) represents a valid alternative (or complementary asset) due to its ability to offer enhanced performances in terms of sensor resolution, tracking accuracy, and weather independence. This paper proposes a particle swarm optimization (PSO) algorithm for DSS AN and manoeuvring, specifically addressing RSO tracking and collision avoidance requirements as an integral part of the overall system design. More specifically, a DSS architecture employing hyperspectral sensors for Earth observation is considered, and passive electro-optical sensors are used, in conjunction with suitable mathematical algorithms, to accomplish autonomous RSO tracking and classification. Simulation case studies are performed to investigate the tracking and system collision avoidance capabilities in both space-based and ground-based tracking scenarios. Results corroborate the effectiveness of the proposed AN technique and highlight its potential to supplement either conventional (ground-based) or SBSS tracking methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.