Loop tiling is a key high-level transformation which is known to maximize locality in loop intensive programs. It has been successfully applied to a number of applications including tensor contractions, iterative stencils and machine learning. This technique has also been extended to a wide variety of computational domains and architectures. The performance achieved with this critical transformation largely depends on a set of inputs given, the tile sizes, due to the complex trade-off between locality and parallelism. This problem is exacerbated in GPGPU architectures due to limited hardware resources such as the available shared-memory.In this paper we present a new technique to compute resource conscious tile sizes for affine programs. We use Integer Linear Programming (ILP) constraints and objectives in a cross-compiler fashion to faithfully and effectively mimic the transformations applied in a polyhedral GPU compiler (PPCG). Our approach significantly reduces the need for experimental auto-tuning by generating only two tile size configurations that achieve strong out-of-the-box performance. We evaluate the effectiveness of our technique using the Polybench benchmark suite on two GPGPUs, an AMD Radeon VII and an NVIDIA Tesla V100, using OpenCL and CUDA programming models. Experimental validation reveals that our approach achieves nearly 75% of the best empirically found tile configuration across both architectures. CCS CONCEPTS• Software and its engineering → Compilers; • General and reference → Performance; • Mathematics of computing → Combinatorial optimization; • Computer systems organization → Parallel architectures.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.