The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.Ciliates are unique among unicellular organisms in that they separate germline and somatic functions 1 . Each cell harbours two kinds of nucleus, namely silent diploid micronuclei and highly polyploid macronuclei. The latter are unusual in that they contain an extensively rearranged genome streamlined for expression and divide by a non-mitotic process. Only micronuclei undergo meiosis to perpetuate genetic information; the macronuclei are lost at each sexual generation and develop anew from the micronuclear lineage.In Paramecium the exact number of micronuclear chromosomes (more than 50) and the structures of their centromeres and telomeres remain unknown. During macronuclear development, these chromosomes are amplified to about 800 copies and undergo two types of DNA elimination event. Tens of thousand of short, unique copy elements (internal eliminated sequences) are removed by a precise mechanism that leads to the reconstitution of functional genes 2 .Transposable elements and other repeated sequences are removed by an imprecise mechanism leading either to chromosome fragmentation and de novo telomere addition or to variable internal deletions 3 . These rearrangements occur after a few rounds of endoreplication, leading to some heterogeneity in the sequences abutting the imprecisely eliminated regions 3 . The sizes of the resulting, acentric macronuclear chromosomes range from 50-1,000 kilobases (kb) as measured by pulsed-field gel electrophoresis. Because the sexual process of autogamy results in an entirely homozygous genotype 4 , the macronuclear DNA that was sequenced was genetically homogeneous.The Paramecium genome sequence The Paramecium macronuclear genome sequence was established with the use of a whole-genome shotgun and assembly strategy. Paired-end sequencing of plasmid and bacterial artificial chromosome (BAC) clones provided a coverage of 13 genome equivalents (Supplementary Table S1). We assembled the sequence reads with Arachne 5 in 1,907 contigs connected in 697 scaffolds of size greater than 2 kb, giving a total coverage of 72...
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.