The interaction of a thin viscous film with an elastic sheet results in coupling of pressure and deformation, which can be utilized as an actuation mechanism for surface deformations in a wide range of applications, including microfluidics, optics, and soft robotics. Implementation of such configurations inherently takes place over finite domains and often requires some pre-stretching of the sheet. Under the assumptions of strong prestretching and small deformations of the lubricated elastic sheet, we use the linearized Reynolds and Föppl-von Kármán equations to derive closed-form analytical solutions describing the deformation in a finite domain due to external forces, accounting for both bending and tension effects. We provide a closed-form solution for the case of a square-shaped actuation region and present the effect of pre-stretching on the dynamics of the deformation. We further present the dependence of the deformation magnitude and timescale on the spatial wavenumber, as well as the transition between stretchingand bending-dominant regimes. We also demonstrate the effect of spatial discretization of the forcing (representing practical actuation elements) on the achievable resolution of the deformation. Extending the problem to an axisymmetric domain, we investigate the effects arising from nonlinearity of the Reynolds and Föppl-von Kármán equations and present the deformation behavior as it becomes comparable to the initial film thickness and dependent on the induced tension. These results set the theoretical foundation for implementation of microfluidic soft actuators based on elastohydrodynanmics.
The growing demand for air conditioning, particularly in hot and humid climates has caused a significant increase in demand for energy resources. A promising solar technology with potential to alleviate the problem is an open absorption system, where humidity is absorbed directly from the air to be treated by direct contact with the absorbent. The absorbent is then regenerated, again in direct contact with an external air stream, at relatively low temperatures of the heat source. The paper describes a study of a liquid desiccant cooling system designed to air-condition a group of offices on the top floor of a building in the Mediterranean city of Haifa, Israel. The system is capable of using as its source of power low-grade solar heat, of the type obtainable from low-cost flat plate collectors, and has a potential to provide both cooling and dehumidification in variable ratios, as required by the load. Several cycle variations have been considered, corresponding to different design options. A parametric study shows that entrance conditions of the ambient air significantly affect the heat and mass transfer occurring during the dehumidification process. The temperatures and flow rates of the heating and cooling water and the flow rates of solution through the dehumidifier and regenerator affect the humidity of the supply air delivered to the conditioned space, and show an optimum in certain cases.
In earlier work, a novel open absorption cycle was proposed, capable of producing both cooling and dehumidification for air conditioning, utilizing low-grade heat. The system, referred to as DER (Dehumidifier-Evaporator-Regenerator), uses ambient air in conjunction with an absorbent solution; the air is dehumidified and then employed to produce chilled water in an evaporative cooler. Alternatively, a portion of the dehumidified air may be used directly for air conditioning purposes. The system thus has the potential to provide both cooling and dehumidification in variable ratios, as required by the load. Computer simulations and theoretical investigations were carried out to analyze and predict the performance of the system. The objective of the present study has been to construct a laboratory system to test the concept, identify problems and carry out preliminary design optimization. The characteristic performance of individual components, analyzed theoretically in the simulation, was studied experimentally. Measurements have provided much-needed realistic data about heat and mass transfer coefficients. The performance of the system has been studied under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the resulting transfer coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.