Let G = H2n + 1 be the 2n + 1-dimensional Heisenberg group and H be a connected Lie subgroup of G. Given any discontinuous subgroup Γ ⊂ G for G/H, a precise union of open sets of the resulting deformation space [Formula: see text] of the natural action of Γ on G/H is derived since the paper of Kobayshi and Nasrin [Deformation of Properly discontinuous action of ℤk and ℝk+1, Internat. J. Math.17 (2006) 1175–1190]. We determine in this paper when exactly this space is endowed with a smooth manifold structure. Such a result is only known when the Clifford–Klein form Γ\G/H is compact and Γ is abelian. When Γ is not abelian or H meets the center of G, the parameter and deformation spaces are shown to be semi-algebraic and equipped with a smooth manifold structure. In the case where Γ is abelian and H does not meet the center of G, then [Formula: see text] splits into finitely many semi-algebraic smooth manifolds and fails to be a Hausdorff space whenever Γ is not maximal, but admits a manifold structure otherwise. In any case, it is shown that [Formula: see text] admits an open smooth manifold as its dense subset. Furthermore, a sufficient and necessary condition for the global stability of all these deformations to hold is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.